1
|
Laghi L, Negri F, Gaiani F, Cavalleri T,
Grizzi F, De'Angelis GL and Malesci A: Prognostic and predictive
cross-roads of microsatellite instability and immune response to
colon cancer. Int J Mol Sci. 21:96802020. View Article : Google Scholar : PubMed/NCBI
|
2
|
Brummel K, Eerkens AL, de Bruyn M and
Nijman HW: Tumour-infiltrating lymphocytes: From prognosis to
treatment selection. Br J Cancer. 128:451–458. 2023. View Article : Google Scholar : PubMed/NCBI
|
3
|
Zhang Q and Sioud M: Tumor-associated
macrophage subsets: Shaping polarization and targeting. Int J Mol
Sci. 24:74932023. View Article : Google Scholar : PubMed/NCBI
|
4
|
Daitoku N, Miyamoto Y, Hiyoshi Y, Tokunaga
R, Sakamoto Y, Sawayama H, Ishimoto T, Baba Y, Yoshida N and Baba
H: Preoperative skeletal muscle status is associated with
tumor-infiltrating lymphocytes and prognosis in patients with
colorectal cancer. Ann Gastroenterol Surg. 6:658–666. 2022.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Melssen MM, Sheybani ND, Leick KM and
Slingluff CL Jr: Barriers to immune cell infiltration in tumors. J
Immunother Cancer. 11:e0064012023. View Article : Google Scholar : PubMed/NCBI
|
6
|
Xiao Z, Todd L, Huang L, Noguera-Ortega E,
Lu Z, Huang L, Kopp M, Li Y, Pattada N, Zhong W, et al:
Desmoplastic stroma restricts T cell extravasation and mediates
immune exclusion and immunosuppression in solid tumors. Nat Commun.
14:51102023. View Article : Google Scholar : PubMed/NCBI
|
7
|
Mao X, Xu J, Wang W, Liang C, Hua J, Liu
J, Zhang B, Meng Q, Yu X and Shi S: Crosstalk between
cancer-associated fibroblasts and immune cells in the tumor
microenvironment: New findings and future perspectives. Mol Cancer.
20:1312021. View Article : Google Scholar : PubMed/NCBI
|
8
|
Bais C, Mueller B, Brady MF, Mannel RS,
Burger RA, Wei W, Marien KM, Kockx MM, Husain A, Birrer MJ, et al:
Tumor microvessel density as a potential predictive marker for
bevacizumab benefit: GOG-0218 biomarker analyses. J Natl Cancer
Inst. 109:djx0662017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Zeng Q, Mousa M, Nadukkandy AS, Franssens
L, Alnaqbi H, Alshamsi FY, Safar HA and Carmeliet P: Understanding
tumour endothelial cell heterogeneity and function from single-cell
omics. Nat Rev Cancer. 23:544–564. 2023. View Article : Google Scholar : PubMed/NCBI
|
10
|
Hendry SA, Farnsworth RH, Solomon B, Achen
MG, Stacker SA and Fox SB: The role of the tumor vasculature in the
host immune response: Implications for therapeutic strategies
targeting the tumor microenvironment. Front Immunol. 7:6212016.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Heryanto YD and Imoto S: The transcriptome
signature analysis of the epithelial-mesenchymal transition and
immune cell infiltration in colon adenocarcinoma. Sci Rep.
13:183832023. View Article : Google Scholar : PubMed/NCBI
|
12
|
Chae YK, Chang S, Ko T, Anker J, Agte S,
Iams W, Choi WM, Lee K and Cruz M: Epithelial-mesenchymal
transition (EMT) signature is inversely associated with T-cell
infiltration in non-small cell lung cancer (NSCLC). Sci Rep.
8:29182018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Singh S and Chakrabarti R: Consequences of
EMT-driven changes in the immune microenvironment of breast cancer
and therapeutic response of cancer cells. J Clin Med. 8:6422019.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Jiang Y and Zhan H: Communication between
EMT and PD-L1 signaling: New insights into tumor immune evasion.
Cancer Lett. 468:72–81. 2020. View Article : Google Scholar : PubMed/NCBI
|
15
|
Hasan J, Byers R and Jayson GC:
Intra-tumoural microvessel density in human solid tumours. Br J
Cancer. 86:1566–1577. 2002. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ning H, Shao QQ, Ding KJ, Gao DX, Lu QL,
Cao QW, Niu ZH, Fu Q, Zhang CH, Qu X and Lü JJ: Tumor-infiltrating
regulatory T cells are positively correlated with angiogenic status
in renal cell carcinoma. Chin Med J (Engl). 125:2120–2125.
2012.PubMed/NCBI
|
17
|
Zhang P, Ma Y, Lv C, Huang M, Li M, Dong
B, Liu X, An G, Zhang W, Zhang J, et al: Upregulation of programmed
cell death ligand 1 promotes resistance response in non-small-cell
lung cancer patients treated with neo-adjuvant chemotherapy. Cancer
Sci. 107:1563–1571. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Ramser M, Eichelberger S, Däster S,
Weixler B, Kraljević M, Mechera R, Tampakis A, Delko T, Güth U,
Stadlmann S, et al: High OX40 expression in recurrent ovarian
carcinoma is indicative for response to repeated chemotherapy. BMC
Cancer. 18:4252018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Liu X, Huang Y, Qi Y, Wu S, Hu F, Wang J,
Shu K, Zhang H, Bartsch JW, Nimsky C, et al: The GBM tumor
microenvironment as a modulator of therapy response: ADAM8 causes
tumor infiltration of tams through HB-EGF/EGFR-mediated CCL2
expression and overcomes TMZ chemosensitization in glioblastoma.
Cancers (Basel). 14:49102022. View Article : Google Scholar : PubMed/NCBI
|
20
|
Malka D, Lièvre A, André T, Taïeb J,
Ducreux M and Bibeau F: Immune scores in colorectal cancer: Where
are we? Eur J Cancer. 140:105–118. 2020. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kuwahara T, Hazama S, Suzuki N, Yoshida S,
Tomochika S, Nakagami Y, Matsui H, Shindo Y, Kanekiyo S, Tokumitsu
Y, et al: Intratumoural-infiltrating CD4 + and FOXP3 + T cells as
strong positive predictive markers for the prognosis of resectable
of resectable colorectal cancer. Br J Cancer. 121:659–665. 2019.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Bergsland CH, Jeanmougin M, Moosavi SH,
Svindland A, Bruun J, Nesbakken A, Sveen A and Lothe RA: Spatial
analysis and CD25-expression identify regulatory T cells as
predictors of a poor prognosis in colorectal cancer. Mod Pathol.
35:1236–1246. 2022. View Article : Google Scholar : PubMed/NCBI
|
23
|
Sconocchia G, Eppenberger S, Spagnoli GC,
Tornillo L, Droeser R, Caratelli S, Ferrelli F, Coppola A, Arriga
R, Lauro D, et al: NK cells and T cells cooperate during the
clinical course of colorectal cancer. Oncoimmunology.
3:e9521972014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Medrek C, Pontén F, Jirström K and
Leandersson K: The presence of tumor associated macrophages in
tumor stroma as a prognostic marker for breast cancer patients. BMC
Cancer. 12:3062012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Pagès F, Mlecnik B, Marliot F, Bindea G,
Ou FS, Bifulco C, Lugli A, Zlobec I, Rau TT, Berger MD, et al:
International validation of the consensus Immunoscore for the
classification of colon cancer: A prognostic and accuracy study.
Lancet. 391:2128–2139. 2018. View Article : Google Scholar : PubMed/NCBI
|
26
|
Mezheyeuski A, Backman M, Mattsson J,
Martín-Bernabé A, Larsson C, Hrynchyk I, Hammarström K, Ström S,
Ekström J, Mauchanski S, et al: An immune score reflecting pro- and
anti-tumoural balance of tumour microenvironment has major
prognostic impact and predicts immunotherapy response in solid
cancers. EBioMedicine. 88:1044522023. View Article : Google Scholar : PubMed/NCBI
|
27
|
Minami K, Hiwatashi K, Ueno S, Sakoda M,
Iino S, Okumura H, Hashiguchi M, Kawasaki Y, Kurahara H, Mataki Y,
et al: Prognostic significance of CD68, CD163 and folate receptor-β
positive macrophages in hepatocellular carcinoma. Exp Ther Med.
15:4465–4476. 2018.PubMed/NCBI
|
28
|
Yamaguchi T, Fushida S, Yamamoto Y,
Tsukada T, Kinoshita J, Oyama K, Miyashita T, Tajima H, Ninomiya I,
Munesue S, et al: Tumor-associated macrophages of the M2 phenotype
contribute to progression in gastric cancer with peritoneal
dissemination. Gastric Cancer. 19:1052–1065. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Troiano G, Caponio VCA, Adipietro I,
Tepedino M, Santoro R, Laino L, Lo Russo L, Cirillo N and Lo Muzio
L: Prognostic significance of CD68+ and
CD163+ tumor associated macrophages in head and neck
squamous cell carcinoma: A systematic review and meta-analysis.
Oral Oncol. 93:66–75. 2019. View Article : Google Scholar : PubMed/NCBI
|
30
|
Shabo I, Olsson H, Sun XF and Svanvik J:
Expression of the macrophage antigen CD163 in rectal cancer cells
is associated with early local recurrence and reduced survival
time. Int J Cancer. 125:1826–1831. 2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Shabo I, Stål O, Olsson H, Doré S and
Svanvik J: Breast cancer expression of CD163, a macrophage
scavenger receptor, is related to early distant recurrence and
reduced patient survival. Int J Cancer. 123:780–786. 2008.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Ma S, Zhao Y, Liu X, Sun Zhang A, Zhang H,
Hu G and Sun XF: FCD163 as a potential biomarker in colorectal
cancer for tumor microenvironment and cancer prognosis: A Swedish
study from tissue microarrays to big data analyses. Cancers
(Basel). 14:61662022. View Article : Google Scholar : PubMed/NCBI
|
33
|
Gorelik L and Flavell RA: Transforming
growth factor-beta in T-cell biology. Nat Rev Immunol. 2:46–53.
2002. View
Article : Google Scholar : PubMed/NCBI
|
34
|
Thomas DA and Massagué J: TGF-beta
directly targets cytotoxic T cell functions during tumor evasion of
immune surveillance. Cancer Cell. 8:369–380. 2005. View Article : Google Scholar : PubMed/NCBI
|
35
|
Hao Y, Baker D and Ten Dijke P:
TGF-β-mediated epithelial-mesenchymal transition and cancer
metastasis. Int J Mol Sci. 20:27672019. View Article : Google Scholar : PubMed/NCBI
|
36
|
Xu J, Lamouille S and Derynck R:
TGF-beta-induced epithelial to mesenchymal transition. Cell Res.
19:156–172. 2009. View Article : Google Scholar : PubMed/NCBI
|
37
|
Moustakas A and Heldin CH: Signaling
networks guiding epithelial-mesenchymal transitions during
embryogenesis and cancer progression. Cancer Sci. 98:1512–1520.
2007. View Article : Google Scholar : PubMed/NCBI
|
38
|
Huang Y, Kim BYS, Chan CK, Hahn SM,
Weissman IL and Jiang W: Improving immune-vascular crosstalk for
cancer immunotherapy. Nat Rev Immunol. 18:195–203. 2018. View Article : Google Scholar : PubMed/NCBI
|
39
|
Franz L, Alessandrini L, Calvanese L,
Crosetta G, Frigo AC and Marioni G: Angiogenesis, programmed death
ligand 1 (PD-L1) and immune microenvironment association in
laryngeal carcinoma. Pathology. 53:844–851. 2021. View Article : Google Scholar : PubMed/NCBI
|
40
|
Bai Z, Zhou Y, Ye Z, Xiong J, Lan H and
Wang F: Tumor-infiltrating lymphocytes in colorectal cancer: The
fundamental indication and application on immunotherapy. Front
Immunol. 12:8089642022. View Article : Google Scholar : PubMed/NCBI
|
41
|
Bruni D, Angell HK and Galon J: The immune
contexture and Immunoscore in cancer prognosis and therapeutic
efficacy. Nat Rev Cancer. 20:662–680. 2020. View Article : Google Scholar : PubMed/NCBI
|
42
|
Havel JJ, Chowell D and Chan TA: The
evolving landscape of biomarkers for checkpoint inhibitor
immunotherapy. Nat Rev Cancer. 19:133–150. 2019. View Article : Google Scholar : PubMed/NCBI
|
43
|
Tumeh PC, Harview CL, Yearley JH, Shintaku
IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu
V, et al: PD-1 blockade induces responses by inhibiting adaptive
immune resistance. Nature. 515:568–571. 2014. View Article : Google Scholar : PubMed/NCBI
|
44
|
Miyamoto Y, Ogawa K, Ohuchi M, Tokunaga R
and Baba H: Emerging evidence of immunotherapy for colorectal
cancer. Ann Gastroenterol Surg. 7:216–224. 2022. View Article : Google Scholar : PubMed/NCBI
|
45
|
Flecchia C, Zaanan A, Lahlou W, Basile D,
Broudin C, Gallois C, Pilla L, Karoui M, Manceau G and Taieb J: MSI
colorectal cancer, all you need to know. Clin Res Hepatol
Gastroenterol. 46:1019832022. View Article : Google Scholar : PubMed/NCBI
|