Unveiling the experimental proof of the anticancer potential of ginsenoside Rg3 (Review)
- Authors:
- Yongmin Liu
- Guanchu Li
- Jinyue Ning
- Yi Zhao
-
Affiliations: Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China, Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China - Published online on: February 28, 2024 https://doi.org/10.3892/ol.2024.14315
- Article Number: 182
-
Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Gao S, Fang C, Wang T, Lu W, Wang N, Sun L, Fang W, Chen Y and Hu R: The effect of ginsenoside Rg3 combined with chemotherapy on immune function in non-small cell lung cancer: A systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore). 102:e334632023. View Article : Google Scholar : PubMed/NCBI | |
Nakhjavani M, Smith E, Townsend AR, Price TJ and Hardingham JE: Anti-Angiogenic properties of ginsenoside Rg3. Molecules. 25:49052020. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Qi F, Wang Z, Zhang Z, Pan N, Huai L, Qu S and Zhao L: A review of traditional Chinese medicine for treatment of glioblastoma. Biosci Trends. 13:476–487. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sun M, Ye Y, Xiao L, Duan X, Zhang Y and Zhang H: Anticancer effects of ginsenoside Rg3 (Review). Int J Mol Med. 39:507–518. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kim IW, Sun WS, Yun BS, Kim NR, Min D and Kim SK: Characterizing a full spectrum of physico-chemical properties of (20S)-and (20R)-ginsenoside Rg3 to be proposed as standard reference materials. J Ginseng Res. 37:124–134. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ren Z, Chen X, Hong L, Zhao X, Cui G, Li A, Liu Y, Zhou L, Sun R, Shen S, et al: Nanoparticle conjugation of ginsenoside Rg3 inhibits hepatocellular carcinoma development and metastasis. Small. 16:e19052332020. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Liang J, Gao C, Wang A, Xia J, Hong C, Zhong Z, Zuo Z, Kim J, Ren H, et al: Multifunctional ginsenoside Rg3-based liposomes for glioma targeting therapy. J Control Release. 330:641–657. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu ZL, Chen HH, Zheng LL, Sun LP and Shi L: Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Sig Transduct Target Ther. 8:1982023. View Article : Google Scholar : PubMed/NCBI | |
Lugano R, Ramachandran M and Dimberg A: Tumor angiogenesis: Causes, consequences, challenges and opportunities. Cell Mol Life Sci. 77:1745–1770. 2020. View Article : Google Scholar : PubMed/NCBI | |
Carmeliet P and Jain RK: Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov. 10:417–427. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kim JW, Jung SY, Kwon YH, Lee SH, Lee JH, Lee BY and Kwon SM: Ginsenoside Rg3 inhibits endothelial progenitor cell differentiation through attenuation of VEGF-Dependent Akt/eNOS signaling. Phytother Res. 26:1286–1293. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zeng D, Wang J, Kong P, Chang C and Li J and Li J: Ginsenoside Rg3 inhibits HIF-1α and VEGF expression in patient with acute leukemia via inhibiting the activation of PI3K/Akt and ERK1/2 pathways. Int J Clin Exp Pathol. 7:2172–2178. 2014.PubMed/NCBI | |
Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LM, Pe'er J, Trent JM, Meltzer PS and Hendrix MJ: Vascular channel formation by human melanoma cells in vivo and in vitro: Vasculogenic Mimicry. Am J Pathol. 155:739–752. 1999. View Article : Google Scholar : PubMed/NCBI | |
Delgado-Bellido D, Zamudio-Martínez E, Fernández-Cortés M, Herrera-Campos AB, Olmedo-Pelayo J, Perez CJ, Expósito J, de Álava E, Amaral AT, Valle FO, et al: VE-Cadherin modulates β-catenin/TCF-4 to enhance vasculogenic mimicry. Cell Death Dis. 14:1352023. View Article : Google Scholar : PubMed/NCBI | |
Zhang F, Lin H, Cao K, Wang H, Pan J, Zhuang J, Chen X, Huang B, Wang D and Qiu S: Vasculogenic mimicry plays an important role in adrenocortical carcinoma. Int J Urol. 23:371–377. 2016. View Article : Google Scholar : PubMed/NCBI | |
Williamson SC, Metcalf RL, Trapani F, Mohan S, Antonello J, Abbott B, Leong HS, Chester CP, Simms N, Polanski R, et al: Vasculogenic mimicry in small cell lung cancer. Nat Commun. 7:133222016. View Article : Google Scholar : PubMed/NCBI | |
Li X, Xue Y, Liu X, Zheng J, Shen S, Yang C, Chen J, Li Z, Liu L, Ma J, et al: ZRANB2/SNHG20/FOXK1 Axis regulates Vasculogenic mimicry formation in glioma. J Exp Clin Cancer Res. 38:682019. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Zhang Z, Qian W, Ji D, Wang Q, Ji B, Zhang Y, Zhang C and Sun Y, Zhu C and Sun Y: Angiogenesis and vasculogenic mimicry are inhibited by 8-Br-cAMP through activation of the cAMP/PKA pathway in colorectal cancer. Onco Targets Ther. 11:3765–3774. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xu MR, Wei PF, Suo MZ, Hu Y, Ding W, Su L, Zhu YD, Song WJ, Tang GH, Zhang M and Li P: Brucine suppresses vasculogenic mimicry in human triple-negative breast cancer cell line MDA-MB-231. Biomed Res Int. 2019:65432302019.PubMed/NCBI | |
Treps L, Faure S and Clere N: Vasculogenic mimicry, a complex and devious process favoring tumorigenesis-Interest in making it a therapeutic target. Pharmacol Ther. 223:1078052021. View Article : Google Scholar : PubMed/NCBI | |
Guo JQ, Zheng QH, Chen H, Chen L, Xu JB, Chen MY, Lu D, Wang ZH, Tong HF and Lin S: Ginsenoside Rg3 inhibition of vasculogenic mimicry in pancreatic cancer through downregulation of VE-cadherin/EphA2/MMP9/MMP2 expression. Int J Oncol. 45:1065–1072. 2014. View Article : Google Scholar : PubMed/NCBI | |
Qi L, Song W, Liu Z, Zhao X, Cao W and Sun B: Wnt3a promotes the vasculogenic mimicry formation of colon cancer via Wnt/β-Catenin signaling. Int J Mol Sci. 16:18564–18579. 2015. View Article : Google Scholar : PubMed/NCBI | |
Junmin S, Hongxiang L, Zhen L, Chao Y and Chaojie W: Ginsenoside Rg3 inhibits colon cancer cell migration by suppressing nuclear factor kappa B activity. J Tradit Chin Med. 35:440–444. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xie Q, Wen H, Zhang Q, Zhou W, Lin X, Xie D and Liu Y: Inhibiting PI3K-AKt signaling pathway is involved in antitumor effects of ginsenoside Rg3 in lung cancer cell. Biomed Pharmacother. 85:16–21. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Shou H, Chen L, Gao W, Fang C and Zhang P: Effects of ginsenoside Rg3 on epigenetic modification in ovarian cancer cells. Oncol Rep. 41:3209–3218. 2019.PubMed/NCBI | |
Kim H, Ji HW, Kim HW, Yun SH, Park JE and Kim SJ: Ginsenoside Rg3 prevents oncogenic long noncoding RNA ATXN8OS from inhibiting tumor-suppressive microRNA-424-5p in breast cancer cells. Biomolecules. 11:1182021. View Article : Google Scholar : PubMed/NCBI | |
Zhao JY, Yuan XK, Luo RZ, Wang LX, Gu W, Yamane D and Feng H: Phospholipase A and acyltransferase 4/retinoic acid receptor responder 3 at the intersection of tumor suppression and pathogen restriction. Front Immunol. 14:11072392023. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Pan HF, Yang LJ, Zhao ZM, Yuan DS, Liu YL and Lin LZ: Panax ginseng C.A. Meyer (Rg3) ameliorates gastric precancerous lesions in Atp4a-/- Mice via inhibition of glycolysis through PI3K/AKT/miRNA-21 Pathway. Evid Based Complement Alternat Med. 2020.2672648. 2020. | |
Mao X, Jin Y, Feng T, Wang H, Liu D, Zhou Z, Yan Q, Yang H, Yang J, Yang J, et al: Ginsenoside Rg3 inhibits the growth of osteosarcoma and attenuates metastasis through the Wnt/β-Catenin and EMT signaling pathway. Evid Based Complement Alternat Med. 2020:60651242020. View Article : Google Scholar : PubMed/NCBI | |
Bian S, Zhao Y, Li F, Lu S, Wang S, Bai X, Liu M, Zhao D, Wang J and Guo D: 20(S)-Ginsenoside Rg3 Promotes HeLa Cell Apoptosis by Regulating Autophagy. Molecules. 24:36552019. View Article : Google Scholar : PubMed/NCBI | |
Wu R, Ru Q, Chen L, Ma B and Li C: Stereospecificity of Ginsenoside Rg3 in the promotion of cellular immunity in hepatoma H22-Bearing mice. J Food Sci. 79:H1430–H1435. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sun MY, Song YN, Zhang M, Zhang CY, Zhang LJ and Zhang H: Ginsenoside Rg3 inhibits the migration and invasion of liver cancer cells by increasing the protein expression of ARHGAP9. Oncol Lett. 17:965–973. 2019.PubMed/NCBI | |
Liu T, Zuo L, Guo D, Chai X, Xu J, Cui Z, Wang Z and Hou C: Ginsenoside Rg3 regulates DNA damage in non-small cell lung cancer cells by activating VRK1/P53BP1 pathway. Biomed Pharmacother. 120:1094832019. View Article : Google Scholar : PubMed/NCBI | |
Liang Y, Zhang T, Jing S, Zuo P, Li T, Wang Y, Xing S, Zhang J and Wei Z: 20(S)-Ginsenoside Rg3 inhibits lung cancer cell proliferation by targeting EGFR-Mediated Ras/Raf/MEK/ERK pathway. Am J Chin Med. 49:753–765. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lu J, Zhou Y, Zheng X, Chen L, Tuo X, Chen H, Xue M, Chen Q, Chen W, Li X and Zhao L: 20(S)-Rg3 upregulates FDFT1 via reducing miR-4425 to inhibit ovarian cancer progression. Arch Biochem Biophys. 693:1085692020. View Article : Google Scholar : PubMed/NCBI | |
Peng Y, Zhang R, Yang X, Zhang Z, Kang N, Bao L, Shen Y, Yan H and Zheng F: Ginsenoside Rg3 suppresses the proliferation of prostate cancer cell line PC3 through ROS-induced cell cycle arrest. Oncol Lett. 17:1139–1145. 2019.PubMed/NCBI | |
Liu Z, Liu T, Li W, Li J, Wang C and Zhang K: Insights into the antitumor mechanism of ginsenosides Rg3. Mol Biol Rep. 48:2639–2652. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Zhang SX, Ai B, Pan HF, Zhang D, Jiang Y, Hu LH, Sun LL, Chen ZS and Lin LZ: Ginsenoside Rg3 promotes cell growth through activation of mTORC1. Front Cell Dev Biol. 9:7303092021. View Article : Google Scholar : PubMed/NCBI | |
Hwang SK, Jeong YJ, Cho HJ, Park YY, Song KH and Chang YC: Rg3-enriched red ginseng extract promotes lung cancer cell apoptosis and mitophagy by ROS production. J Ginseng Res. 46:138–146. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Hong Y, Shu Y, Wu C, Ye G, Chen H, Zhou H, Gao R and Zhang J: The involvement of Parkin-dependent mitophagy in the anti-cancer activity of Ginsenoside. J Ginseng Res. 46:266–274. 2022. View Article : Google Scholar : PubMed/NCBI | |
Dai Y, Wang W, Sun Q and Tuohayi J: Ginsenoside Rg3 promotes the antitumor activity of gefitinib in lung cancer cell lines. Exp Ther Med. 17:953–959. 2019.PubMed/NCBI | |
Peng Z, Wu WW and Yi P: The efficacy of ginsenoside Rg3 combined with first-line chemotherapy in the treatment of advanced non-small cell lung cancer in China: A systematic review and meta-analysis of randomized clinical trials. Front Pharmacol. 11:6308252020. View Article : Google Scholar : PubMed/NCBI | |
Wang X, He R, Geng L, Yuan J and Fan H: Ginsenoside Rg3 alleviates cisplatin resistance of gastric cancer cells through inhibiting SOX2 and the PI3K/Akt/mTOR signaling axis by Up-Regulating miR-429. Front Genet. 13:8231822022. View Article : Google Scholar : PubMed/NCBI | |
Pan H, Yang L, Bai H, Luo J and Deng Y: Ginsenoside Rg3 increases gemcitabine sensitivity of pancreatic adenocarcinoma via reducing ZFP91 mediated TSPYL2 destabilization. J Ginseng Res. 46:636–645. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li J and Yang B: Ginsenoside Rg3 enhances the radiosensitivity of lung cancer A549 and H1299 cells via the PI3K/AKT signaling pathway. In Vitro Cell Dev Biol Anim. 59:19–30. 2023. View Article : Google Scholar : PubMed/NCBI | |
Changizi V, Gharekhani V and Motavaseli E: Co-treatment with Ginsenoside 20(S)-Rg3 and curcumin increases radiosensitivity of MDA-MB-231 cancer cell line. Iran J Med Sci. 46:291–297. 2021.PubMed/NCBI | |
Hu G, Luo N, Guo Q, Wang D, Peng P, Liu D, Liu S, Zhang L, Long G and Sun W: Ginsenoside Rg3 sensitizes nasopharyngeal carcinoma cells to radiation by suppressing epithelial mesenchymal transition. Radiat Res. 199:460–467. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen YJ, Wu JY, Deng YY, Wu Y, Wang XQ, Li AS, Wong LY, Fu XQ, Yu ZL and Liang C: Ginsenoside Rg3 in combination with artesunate overcomes sorafenib resistance in hepatoma cell and mouse models. J Ginseng Res. 46:418–425. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wei Q, Ren Y, Zheng X, Yang S, Lu T, Ji H, Hua H and Shan K: Ginsenoside Rg3 and sorafenib combination therapy relieves the hepatocellular carcinomaprogression through regulating the HK2-mediated glycolysis and PI3K/Akt signaling pathway. Bioengineered. 13:13919–13928. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhu H, Wang SY, Zhu JH, Liu H, Kong M, Mao Q, Zhang W and Li SL: Efficacy and safety of transcatheter arterial chemoembolization combined with ginsenosides in hepatocellular carcinoma treatment. Phytomedicine. 91:1537002021. View Article : Google Scholar : PubMed/NCBI | |
Pu Z, Ge F, Wang Y, Jiang Z, Zhu S, Qin S, Dai Q, Liu H and Hua H: Ginsenoside-Rg3 inhibits the proliferation and invasion of hepatoma carcinoma cells via regulating long non-coding RNA HOX antisense intergenic. Bioengineered. 12:2398–2409. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang T, Zhang C and Wang S: Ginsenoside Rg3 inhibits osteosarcoma progression by reducing circ_0003074 expression in a miR-516b-5p/KPNA4-dependent manner. J Orthop Surg Res. 16:7242021. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Sun W, Zheng A, Zhang Y, Fang C and Zhang P: Ginsenoside Rg3 suppresses ovarian cancer cell proliferation and invasion by inhibiting the expression of lncRNA H19. Acta Biochim Pol. 68:575–582. 2021.PubMed/NCBI | |
Bilotta MT, Antignani A and Fitzgerald DJ: Managing the TME to improve the efficacy of cancer therapy. Front Immunol. 13:9549922022. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Wang A, Zhang S, Kim J, Xia J, Zhang F, Wang D, Wang Q and Wang J: Paclitaxel-loaded ginsenoside Rg3 liposomes for drug-resistant cancer therapy by dual targeting of the tumor microenvironment and cancer cells. J Adv Res. 49:159–173. 2023. View Article : Google Scholar : PubMed/NCBI | |
Xia J, Zhang S, Zhang R, Wang A, Zhu Y, Dong M, Ma S, Hong C, Liu S, Wang D and Wang J: Targeting therapy and tumor microenvironment remodeling of triple-negative breast cancer by ginsenoside Rg3 based liposomes. J Nanobiotechnol. 20:4142022. View Article : Google Scholar | |
Wu H, Wei G, Luo L, Li L, Gao Y, Tan X, Wang S, Chang H, Liu Y, Wei Y, et al: Ginsenoside Rg3 nanoparticles with permeation enhancing based chitosan derivatives were encapsulated with doxorubicin by thermosensitive hydrogel and anti-cancer evaluation of peritumoral hydrogel injection combined with PD-L1 antibody. Biomater Res. 26:772022. View Article : Google Scholar : PubMed/NCBI | |
Xia J, Ma S, Zhu X, Chen C, Zhang R, Cao Z, Chen X, Zhang L, Zhu Y, Zhang S, et al: Versatile ginsenoside Rg3 liposomes inhibit tumor metastasis by capturing circulating tumor cells and destroying metastatic niches. Sci Adv. 8:eabj12622022. View Article : Google Scholar : PubMed/NCBI | |
Sun D, Zou Y, Song L, Han S, Yang H, Chu D, Dai Y, Ma J, O'Driscoll CM, Yu Z and Guo J: A cyclodextrin-based nanoformulation achieves co-delivery of ginsenoside Rg3 and quercetin for chemo-immunotherapy in colorectal cancer. Acta Pharm Sin B. 12:378–393. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zuo S, Wang J, An X, Wang Z, Zheng X and Zhang Y: Fabrication of ginsenoside-based nanodrugs for enhanced antitumor efficacy on triple-negative breast cancer. Front Bioeng Biotechnol. 10:9454722022. View Article : Google Scholar : PubMed/NCBI | |
Xiong J, Yuan H, Wu H, Cheng J, Yang S and Hu T: Black phosphorus conjugation of chemotherapeutic ginsenoside Rg3: enhancing targeted multimodal nanotheranostics against lung cancer metastasis. Drug Deliv. 28:1748–1758. 2021. View Article : Google Scholar : PubMed/NCBI | |
Luo X, Wang H and Ji D: Carbon nanotubes (CNT)-loaded ginsenosides Rb3 suppresses the PD-1/PD-L1 pathway in triple-negative breast cancer. Aging (Albany NY). 13:17177–17189. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen M, Qiao Y, Cao J, Ta L, Ci T and Ke X: Biomimetic doxorubicin/ginsenoside co-loading nanosystem for chemoimmunotherapy of acute myeloid leukemia. J Nanobiotechnol. 20:2732022. View Article : Google Scholar | |
Lu SL, Wang YH, Liu GF, Wang L, Li Y, Guo ZY and Cheng C: Graphene oxide nanoparticle-loaded ginsenoside rg3 improves photodynamic therapy in inhibiting malignant progression and stemness of osteosarcoma. Front Mol Biosci. 8:6630892021. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Xu Q, Zhou C and Lin Y: Liposomes co-loaded with ursolic acid and ginsenoside Rg3 in the treatment of hepatocellular carcinoma. Acta Biochim Pol. 68:711–715. 2021.PubMed/NCBI | |
Zhao X, Wu J, Zhang K, Guo D, Hong L, Chen X, Wang B and Song Y: The synthesis of a nanodrug using metal-based nanozymes conjugated with ginsenoside Rg3 for pancreatic cancer therapy. Nanoscale Adv. 4:190–199. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wei X, Chen J, Su F, Su X, Hu T and Hu S: Stereospecificity of ginsenoside Rg3 in promotion of the immune response to ovalbumin in mice. Int Immunol. 24:465–471. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lee Y, Park A, Park YJ, Jung H, Kim TD, Noh JY, Choi I, Lee S and Ran Yoon S: Ginsenoside 20(R)-Rg3 enhances natural killer cell activity by increasing activating receptor expression through the MAPK/ERK signaling pathway. Int Immunopharmacol. 107:1086182022. View Article : Google Scholar : PubMed/NCBI | |
Cho M, Choi G, Shim I and Chung Y: Enhanced Rg3 negatively regulates Th1 cell responses. J Ginseng Res. 43:49–57. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Zhang Z, Liu J, Wang Y, Zhou Q, Wang S and Wang X: Ginsenoside Rg3 improves cyclophosphamide-induced immunocompetence in Balb/c mice. Int Immunopharmacol. 72:98–111. 2019. View Article : Google Scholar : PubMed/NCBI | |
Park YJ, Cho M, Choi G, Na H and Chung Y: A Critical Regulation of Th17 Cell Responses and Autoimmune Neuro-Inflammation by Ginsenoside Rg3. Biomolecules. 10:1222020. View Article : Google Scholar : PubMed/NCBI | |
Sun J, Hu S and Song X: Adjuvant effects of protopanaxadiol and protopanaxatriol saponins from ginseng roots on the immune responses to ovalbumin in mice. Vaccine. 25:1114–1120. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yang QY, Lai XD, Ouyang J and Yang JD: Effects of Ginsenoside Rg3 on fatigue resistance and SIRT1 in aged rats. Toxicology. 409:144–151. 2018. View Article : Google Scholar : PubMed/NCBI | |
Park KT, Jo H, Kim B and Kim W: Red Ginger Extract Prevents the Development of Oxaliplatin-Induced Neuropathic Pain by Inhibiting the Spinal Noradrenergic System in Mice. Biomedicines. 11:4322023. View Article : Google Scholar : PubMed/NCBI | |
Suzuki T, Yamamoto A, Ohsawa M, Motoo Y, Mizukami H and Makino T: Effect of ninjin'yoeito and ginseng extracts on oxaliplatin-induced neuropathies in mice. J Nat Med. 71:757–764. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Zhang P, Wang C, Shan Y, Wang D, Qian F, Sun M and Zhu C: Effect of ginsenoside Rg3 on tyrosine hydroxylase and related mechanisms in the forced swimming-induced fatigue rats. J Ethnopharmacol. 150:138–147. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y and Zhang Z: The history and advances in cancer immunotherapy: Understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol. 17:807–821. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wastyk HC, Fragiadakis GK, Perelman D, Dahan D, Merrill BD, Yu FB, Topf M, Gonzalez CG, Van Treuren W, Han S, et al: Gut-microbiota-targeted diets modulate human immune status. Cell. 184:4137–4153.e14. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhou CB, Zhou YL and Fang JY: Gut Microbiota in cancer immune response and immunotherapy. Trends Cancer. 7:647–660. 2021. View Article : Google Scholar : PubMed/NCBI | |
Pickard JM, Zeng MY, Caruso R and Núñez G: Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev. 279:70–89. 2017. View Article : Google Scholar : PubMed/NCBI | |
Adak A and Khan MR: An insight into gut microbiota and its functionalities. Cell Mol Life Sci. 76:473–493. 2019. View Article : Google Scholar : PubMed/NCBI | |
Panigrahi DP, Praharaj PP, Bhol CS, Mahapatra KK, Patra S, Behera BP, Mishra SR and Bhutia SK: The emerging, multifaceted role of mitophagy in cancer and cancer therapeutics. Semin Cancer Biol. 66:45–58. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zecchini V, Paupe V, Herranz-Montoya I, Janssen J, Wortel IMN, Morris JL, Ferguson A, Chowdury SR, Segarra-Mondejar M, Costa ASH, et al: Fumarate induces vesicular release of mtDNA to drive innate immunity. Nature. 615:499–506. 2023. View Article : Google Scholar : PubMed/NCBI | |
Qiu S, Zhong X, Meng X, Li S, Qian X, Lu H, Cai J, Zhang Y, Wang M, Ye Z, et al: Mitochondria-localized cGAS suppresses ferroptosis to promote cancer progression. Cell Res. 33:299–311. 2023. View Article : Google Scholar : PubMed/NCBI | |
Tang YC, Zhang Y, Zhou J, Zhi Q, Wu MY, Gong FR, Shen M, Liu L, Tao M, Shen B, et al: Ginsenoside Rg3 targets cancer stem cells and tumor angiogenesis to inhibit colorectal cancer progression in vivo. Int J Oncol. 52:127–138. 2018.PubMed/NCBI | |
Song JH, Eum DY, Park SY, Jin YH, Shim JW, Park SJ, Kim MY, Park SJ, Heo K and Choi YJ: Inhibitory effect of ginsenoside Rg3 on cancer stemness and mesenchymal transition in breast cancer via regulation of myeloid-derived suppressor cells. PLoS One. 15:e02405332020. View Article : Google Scholar : PubMed/NCBI | |
Ge X, Zhen F, Yang B, Yang X, Cai J, Zhang C, Zhang S, Cao Y, Ma J, Cheng H and Sun X: Ginsenoside Rg3 enhances radiosensitization of hypoxic oesophageal cancer cell lines through vascular endothelial growth factor and hypoxia inducible factor 1α. J Int Med Res. 42:628–640. 2014. View Article : Google Scholar : PubMed/NCBI | |
Qu G and Li B: Inhibition of the hypoxia-induced factor-1α and vascular endothelial growth factor expression through ginsenoside Rg3 in human gastric cancer cells. J Can Res Ther. 15:1642–1646. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chang L, Huo B, Lv Y, Wang Y and Liu W: Ginsenoside Rg3 enhances the inhibitory effects of chemotherapy on esophageal squamous cell carcinoma in mice. Mol Clin Oncol. 2:1043–1046. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lee YJ, Lee S, Ho JN, Byun SS, Hong SK, Lee SE and Lee E: Synergistic antitumor effect of ginsenoside Rg3 and cisplatin in cisplatin-resistant bladder tumor cell line. Oncol Rep. 32:1803–1808. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zou J, Su H, Zou C, Liang X and Fei Z: Ginsenoside Rg3 suppresses the growth of gemcitabine-resistant pancreatic cancer cells by upregulating lncRNA-CASC2 and activating PTEN signaling. J Biochem Mol Toxicol. 34:e224802020. View Article : Google Scholar : PubMed/NCBI | |
Ahmmed B, Kampo S, Khan M, Faqeer A, Kumar SP, Yulin L, Liu JW and Yan Q: Rg3 inhibits gemcitabine-induced lung cancer cell invasiveness through ROS-dependent, NF-κB- and HIF-1α-mediated downregulation of PTX3. J Cell Physiol. 234:10680–10697. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yuan Z, Jiang H, Zhu X, Liu X and Li J: Ginsenoside Rg3 promotes cytotoxicity of Paclitaxel through inhibiting NF-κB signaling and regulating Bax/Bcl-2 expression on triple-negative breast cancer. Biomed Pharmacother. 89:227–232. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li L, Ni J, Li M, Chen J, Han L, Zhu Y, Kong D, Mao J, Wang Y, Zhang B, et al: Ginsenoside Rg3 micelles mitigate doxorubicin-induced cardiotoxicity and enhance its anticancer efficacy. Drug Deliv. 24:1617–1630. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shan K, Wang Y, Hua H, Qin S, Yang A and Shao J: Ginsenoside Rg3 combined with oxaliplatin inhibits the proliferation and promotes apoptosis of hepatocellular carcinoma cells via downregulating PCNA and cyclin D1. Biol Pharm Bull. 42:900–905. 2019. View Article : Google Scholar : PubMed/NCBI |