CCNA2 and NEK2 regulate glioblastoma progression by targeting the cell cycle
- Authors:
- Hao-Yu Zhou
- Yi-Chang Wang
- Tuo Wang
- Wei Wu
- Yi-Yang Cao
- Bei-Chen Zhang
- Mao-De Wang
- Ping Mao
-
Affiliations: Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China - Published online on: March 13, 2024 https://doi.org/10.3892/ol.2024.14339
- Article Number: 206
-
Copyright: © Zhou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Ostrom QT, Price M, Neff C, Cioffi G, Waite KA, Kruchko C and Barnholtz-Sloan JS: CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2015–2019. Neuro Oncol. 24 (Suppl 5):v1–v95. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xu S, Tang L, Li X, Fan F and Liu Z: Immunotherapy for glioma: Current management and future application. Cancer Lett. 476:1–12. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Lang F and Yang C: NRF2 in human neoplasm: Cancer biology and potential therapeutic target. Pharmacol Ther. 217:1076642021. View Article : Google Scholar : PubMed/NCBI | |
Asad AS, Candia AJN, González N, Zuccato CF, Seilicovich A and Candolfi M: Current non-viral gene therapy strategies for the treatment of glioblastoma. Curr Med Chem. 28:7729–7748. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shergalis A, Bankhead A III, Luesakul U, Muangsin N and Neamati N: Current challenges and opportunities in treating glioblastoma. Pharmacol Rev. 70:412–445. 2018. View Article : Google Scholar : PubMed/NCBI | |
Huang PH, Xu AM and White FM: Oncogenic EGFR signaling networks in glioma. Sci Signal. 2:re62009. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Liu B, Hou X, Pang B, Guo P, Jiang W, Ding Q, Zhang R, Xin T, Guo H, et al: Overexpression of NIMA-related kinase 2 is associated with poor prognoses in malignant glioma. J Neurooncol. 132:409–417. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xiang J, Alafate W, Wu W, Wang Y, Li X, Xie W, Bai X, Li R, Wang M and Wang J: NEK2 enhances malignancies of glioblastoma via NIK/NF-κB pathway. Cell Death Dis. 13:582022. View Article : Google Scholar : PubMed/NCBI | |
Xia J, Franqui Machin R, Gu Z and Zhan F: Role of NEK2A in human cancer and its therapeutic potentials. Biomed Res Int. 2015:8624612015. View Article : Google Scholar : PubMed/NCBI | |
Faragher AJ and Fry AM: Nek2A kinase stimulates centrosome disjunction and is required for formation of bipolar mitotic spindles. Mol Biol Cell. 14:2876–2889. 2003. View Article : Google Scholar : PubMed/NCBI | |
Jeong Y, Lee J, Kim K, Yoo JC and Rhee K: Characterization of NIP2/centrobin, a novel substrate of Nek2, and its potential role in microtubule stabilization. J Cell Sci. 120:2106–2116. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhong X, Guan X, Liu W and Zhang L: Aberrant expression of NEK2 and its clinical significance in non-small cell lung cancer. Oncol Lett. 8:1470–1476. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gu Z, Xia J, Xu H, Frech I, Tricot G and Zhan F: NEK2 promotes aerobic glycolysis in multiple myeloma through regulating splicing of pyruvate kinase. J Hematol Oncol. 10:172017. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Huang X, Xu J, Li E, Lao M, Tang T, Zhang G, Guo C, Zhang X, Chen W, et al: NEK2 inhibition triggers anti-pancreatic cancer immunity by targeting PD-L1. Nat Commun. 12:45362021. View Article : Google Scholar : PubMed/NCBI | |
Lee J and Gollahon L: Mitotic perturbations induced by Nek2 overexpression require interaction with TRF1 in breast cancer cells. Cell Cycle. 12:3599–3614. 2013. View Article : Google Scholar : PubMed/NCBI | |
Fang Y and Zhang X: Targeting NEK2 as a promising therapeutic approach for cancer treatment. Cell Cycle. 15:895–907. 2016. View Article : Google Scholar : PubMed/NCBI | |
Qi C, Lei L, Hu J, Wang G, Liu J and Ou S: Serine incorporator 2 (SERINC2) expression predicts an unfavorable prognosis of low-grade glioma (LGG): Evidence from bioinformatics analysis. J Mol Neurosci. 70:1521–1532. 2020. View Article : Google Scholar : PubMed/NCBI | |
Pagano M, Pepperkok R, Verde F, Ansorge W and Draetta G: Cyclin A is required at two points in the human cell cycle. EMBO J. 11:961–971. 1992. View Article : Google Scholar : PubMed/NCBI | |
Murphy M, Stinnakre MG, Senamaud-Beaufort C, Winston NJ, Sweeney C, Kubelka M, Carrington M, Bréchot C and Sobczak-Thépot J: Delayed early embryonic lethality following disruption of the murine cyclin A2 gene. Nat Genet. 15:83–86. 1997. View Article : Google Scholar : PubMed/NCBI | |
Jiang A, Zhou Y, Gong W, Pan X, Gan X, Wu Z, Liu B, Qu L and Wang L: CCNA2 as an immunological biomarker encompassing tumor microenvironment and therapeutic response in multiple cancer types. Oxid Med Cell Longev. 2022:59105752022. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhong Q, Li Z, Lin Z, Chen H and Wang P: Integrated profiling identifies CCNA2 as a potential biomarker of immunotherapy in breast cancer. Onco Targets Ther. 14:2433–2448. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Zhang Y, Zhou Y, Wang F, Yin C, Ding L and Zhang S: Tanshinone IIA suppresses the progression of lung adenocarcinoma through regulating CCNA2-CDK2 complex and AURKA/PLK1 pathway. Sci Rep. 11:236812021. View Article : Google Scholar : PubMed/NCBI | |
Gan Y, Li Y, Li T, Shu G and Yin G: CCNA2 acts as a novel biomarker in regulating the growth and apoptosis of colorectal cancer. Cancer Manag Res. 10:5113–5124. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cai Y and Yang W: PKMYT1 regulates the proliferation and epithelial-mesenchymal transition of oral squamous cell carcinoma cells by targeting CCNA2. Oncol Lett. 23:632022. View Article : Google Scholar : PubMed/NCBI | |
Bendris N, Arsic N, Lemmers B and Blanchard JM: Cyclin A2, Rho GTPases and EMT. Small GTPases. 3:225–228. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li J, Ying Y, Xie H, Jin K, Yan H, Wang S, Xu M, Xu X, Wang X, Yang K, et al: Dual regulatory role of CCNA2 in modulating CDK6 and MET-mediated cell-cycle pathway and EMT progression is blocked by miR-381-3p in bladder cancer. FASEB J. 33:1374–1388. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Liu X, Zhou W, Lu S, Wu C, Wu Z, Liu R, Li X, Wu J, Liu Y, et al: Identification of key genes associated with the process of hepatitis B inflammation and cancer transformation by integrated bioinformatics analysis. Front Genet. 12:6545172021. View Article : Google Scholar : PubMed/NCBI | |
Zhou Z, Cheng Y, Jiang Y, Liu S, Zhang M, Liu J and Zhao Q: Ten hub genes associated with progression and prognosis of pancreatic carcinoma identified by co-expression analysis. Int J Biol Sci. 14:124–136. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhao Z, Zhang KN, Wang Q, Li G, Zeng F, Zhang Y, Wu F, Chai R, Wang Z, Zhang C, et al: Chinese glioma genome atlas (CGGA): A comprehensive resource with functional genomic data from Chinese glioma patients. Genomics Proteomics Bioinformatics. 19:1–12. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Research Network, . Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, Ellrott K, Shmulevich I, Sander C and Stuart JM: The cancer genome atlas pan-cancer analysis project. Nat Genet. 45:1113–130. 2013. View Article : Google Scholar : PubMed/NCBI | |
Neftel C, Laffy J, Filbin MG, Hara T, Shore ME, Rahme GJ, Richman AR, Silverbush D, Shaw ML, Hebert CM, et al: An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell. 178:835–849.e21. 2019. View Article : Google Scholar : PubMed/NCBI | |
Satija R, Farrell JA, Gennert D, Schier AF and Regev A: Spatial reconstruction of single-cell gene expression data. Nat Biotechnol. 33:495–502. 2015. View Article : Google Scholar : PubMed/NCBI | |
Aran D, Looney AP, Liu L, Wu E, Fong V, Hsu A, Chak S, Naikawadi RP, Wolters PJ, Abate AR, et al: Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol. 20:163–172. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hu C, Li T, Xu Y, Zhang X, Li F, Bai J, Chen J, Jiang W, Yang K, Ou Q, et al: CellMarker 2.0: An updated database of manually curated cell markers in human/mouse and web tools based on scRNA-seq data. Nucleic Acids Res. 51(D1): D870–D876. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Wang ZX, Chen YX, Wu HX, Yin L, Zhao Q, Luo HY, Zeng ZL, Qiu MZ and Xu RH: Integrated analysis of single-cell and bulk RNA sequencing data reveals a pan-cancer stemness signature predicting immunotherapy response. Genome Med. 14:452022. View Article : Google Scholar : PubMed/NCBI | |
Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon NJ, Livak KJ, Mikkelsen TS and Rinn JL: The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 32:381–386. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zheng SC, Stein-O'Brien G, Augustin JJ, Slosberg J, Carosso GA, Winer B, Shin G, Bjornsson HT, Goff LA and Hansen KD: Universal prediction of cell-cycle position using transfer learning. Genome Biol. 23:412022. View Article : Google Scholar : PubMed/NCBI | |
Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP and Tamayo P: The Molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 1:417–425. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yu G, Wang LG, Han Y and He QY: clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS. 16:284–287. 2012. View Article : Google Scholar : PubMed/NCBI | |
Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, Cahill DP, Nahed BV, Curry WT, Martuza RL, et al: Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 344:1396–1401. 2014. View Article : Google Scholar : PubMed/NCBI | |
Querec TD, Akondy RS, Lee EK, Cao W, Nakaya HI, Teuwen D, Pirani A, Gernert K, Deng J, Marzolf B, et al: Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat Immunol. 10:116–125. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kinoshita M, Uchida T, Sato A, Nakashima M, Nakashima H, Shono S, Habu Y, Miyazaki H, Hiroi S and Seki S: Characterization of two F4/80-positive Kupffer cell subsets by their function and phenotype in mice. J Hepatol. 53:903–910. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Li Z, Skrzypczynska KM, Fang Q, Zhang W, O'Brien SA, He Y, Wang L, Zhang Q, Kim A, et al: Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer. Cell. 181:442–459.e29. 2020. View Article : Google Scholar : PubMed/NCBI | |
Haber AL, Biton M, Rogel N, Herbst RH, Shekhar K, Smillie C, Burgin G, Delorey TM, Howitt MR, Katz Y, et al: A single-cell survey of the small intestinal epithelium. Nature. 551:333–339. 2017. View Article : Google Scholar : PubMed/NCBI | |
Qiu J, Qu X, Wang Y, Guo C, Lv B, Jiang Q, Su W, Wang L and Hua K: Single-cell landscape highlights heterogenous microenvironment, novel immune reaction patterns, potential biomarkers and unique therapeutic strategies of cervical squamous carcinoma, human papillomavirus-associated (HPVA) and non-HPVA adenocarcinoma. Adv Sci (Weinh). 10:e22049512023. View Article : Google Scholar : PubMed/NCBI | |
van der Poel M, Ulas T, Mizee MR, Hsiao CC, Miedema SSM, Adelia Schuurman KG, Helder B, Tas SW, Schultze JL, et al: Transcriptional profiling of human microglia reveals grey-white matter heterogeneity and multiple sclerosis-associated changes. Nat Commun. 10:11392019. View Article : Google Scholar : PubMed/NCBI | |
Bassez A, Vos H, Van Dyck L, Floris G, Arijs I, Desmedt C, Boeckx B, Vanden Bempt M, Nevelsteen I, Lambein K, et al: A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer. Nat Med. 27:820–832. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wendisch D, Dietrich O, Mari T, von Stillfried S, Ibarra IL, Mittermaier M, Mache C, Chua RL, Knoll R, Timm S, et al: SARS-CoV-2 infection triggers profibrotic macrophage responses and lung fibrosis. Cell. 184:6243–6261.e27. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gong Z, Li Q, Shi J, Li P, Hua L, Shultz LD and Ren G: Immunosuppressive reprogramming of neutrophils by lung mesenchymal cells promotes breast cancer metastasis. Sci Immunol. 8:eadd52042023. View Article : Google Scholar : PubMed/NCBI | |
Kennedy A, Waters E, Rowshanravan B, Hinze C, Williams C, Janman D, Fox TA, Booth C, Pesenacker AM, Halliday N, et al: Differences in CD80 and CD86 transendocytosis reveal CD86 as a key target for CTLA-4 immune regulation. Nat Immunol. 23:1365–1378. 2022. View Article : Google Scholar : PubMed/NCBI | |
Amiry-Moghaddam M: AQP4 and the fate of gliomas. Cancer Res. 79:2810–2811. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hu H, Mu Q, Bao Z, Chen Y, Liu Y, Chen J, Wang K, Wang Z, Nam Y, Jiang B, et al: Mutational landscape of secondary glioblastoma guides MET-targeted trial in brain tumor. Cell. 175:1665–1678.e18. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kakogiannos N, Ferrari L, Giampietro C, Scalise AA, Maderna C, Ravà M, Taddei A, Lampugnani MG, Pisati F, Malinverno M, et al: JAM-A acts via C/EBP-α to promote claudin-5 expression and enhance endothelial barrier function. Circ Res. 127:1056–1073. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hosmann A, Jaber M, Roetzer-Pejrimovsky T, Timelthaler G, Borkovec M, Kiesel B, Wadiura LI, Millesi M, Mercea PA, Phillips J, et al: CD34 microvascularity in low-grade glioma: Correlation with 5-aminolevulinic acid fluorescence and patient prognosis in a multicenter study at three specialized centers. J Neurosurg. 138:1281–1290. 20232PubMed/NCBI | |
Agostini M, Amato F, Vieri ML, Greco G, Tonazzini I, Baroncelli L, Caleo M, Vannini E, Santi M, Signore G and Cecchini M: Glial-fibrillary-acidic-protein (GFAP) biomarker detection in serum-matrix: Functionalization strategies and detection by an ultra-high-frequency surface-acoustic-wave (UHF-SAW) lab-on-chip. Biosens Bioelectron. 172:1127742021. View Article : Google Scholar : PubMed/NCBI | |
Gai QJ, Fu Z, He J, Mao M, Yao XX, Qin Y, Lan X, Zhang L, Miao JY, Wang YX, et al: EPHA2 mediates PDGFA activity and functions together with PDGFRA as prognostic marker and therapeutic target in glioblastoma. Signal Transduct Target Ther. 7:332022. View Article : Google Scholar : PubMed/NCBI | |
Suvà ML, Rheinbay E, Gillespie SM, Patel AP, Wakimoto H, Rabkin SD, Riggi N, Chi AS, Cahill DP, Nahed BV, et al: Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells. Cell. 157:580–594. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Chu L, Zeng Z, Xu S, Yang H, Zhang X, Jia J, Long N, Hu Y and Liu J: Four specific biomarkers associated with the progression of glioblastoma multiforme in older adults identified using weighted gene co-expression network analysis. Bioengineered. 12:6643–6654. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bendris N, Loukil A, Cheung C, Arsic N, Rebouissou C, Hipskind R, Peter M, Lemmers B and Blanchard JM: Cyclin A2: A genuine cell cycle regulator? Biomol Concepts. 3:535–543. 2012. View Article : Google Scholar : PubMed/NCBI | |
Loukil A, Cheung CT, Bendris N, Lemmers B, Peter M and Blanchard JM: Cyclin A2: At the crossroads of cell cycle and cell invasion. World J Biol Chem. 6:346–350. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liang W, Guan H, He X, Ke W, Xu L, Liu L, Xiao H and Li Y: Down-regulation of SOSTDC1 promotes thyroid cancer cell proliferation via regulating cyclin A2 and cyclin E2. Oncotarget. 6:31780–31791. 2015. View Article : Google Scholar : PubMed/NCBI | |
Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA and Mann M: Proteomic characterization of the human centrosome by protein correlation profiling. Nature. 426:570–574. 2003. View Article : Google Scholar : PubMed/NCBI | |
O'regan L, Blot J and Fry AM: Mitotic regulation by NIMA-related kinases. Cell Div. 2:252007. View Article : Google Scholar : PubMed/NCBI | |
Huang X, Zhang G, Tang T, Gao X and Liang T: One shoot, three birds: Targeting NEK2 orchestrates chemoradiotherapy, targeted therapy, and immunotherapy in cancer treatment. Biochim Biophys Acta Rev Cancer. 1877:1886962022. View Article : Google Scholar : PubMed/NCBI | |
Alcantara Llaguno S, Chen J, Kwon CH, Jackson EL, Li Y, Burns DK, Alvarez-Buylla A and Parada LF: Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model. Cancer Cell. 15:45–56. 2009. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Sage JC, Miller MR, Verhaak RG, Hippenmeyer S, Vogel H, Foreman O, Bronson RT, Nishiyama A, Luo L and Zong H: Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell. 146:209–221. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hydbring P, Malumbres M and Sicinski P: Non-canonical functions of cell cycle cyclins and cyclin-dependent kinases. Nat Rev Mol Cell Biol. 17:280–292. 2016. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Li Q, Peng Q, Xie Y, Wang W, Pei C, Zhao Y, Liu R, Huang L, Li T, et al: Single-cell RNA sequencing reveals heterogeneity and differential expression of decidual tissues during the peripartum period. Cell Prolif. 54:e129672021. View Article : Google Scholar : PubMed/NCBI | |
Zhao T, Fu Y, Zhu J, Liu Y, Zhang Q, Yi Z, Chen S, Jiao Z, Xu X, Xu J, et al: Single-cell RNA-Seq reveals dynamic early embryonic-like programs during chemical reprogramming. Cell Stem Cell. 23:31–45.e7. 2018. View Article : Google Scholar : PubMed/NCBI | |
Balducci M, Chiesa S, Diletto B, D'Agostino GR, Mangiola A, Manfrida S, Mantini G, Albanese A, Fiorentino A, Frascino V, et al: Low-dose fractionated radiotherapy and concomitant chemotherapy in glioblastoma multiforme with poor prognosis: A feasibility study. Neuro Oncol. 14:79–86. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kong L, Gao J, Hu J, Lu R, Yang J, Qiu X, Hu W and Lu JJ: Carbon ion radiotherapy boost in the treatment of glioblastoma: A randomized phase I/III clinical trial. Cancer Commun (Lond). 39:52019.PubMed/NCBI | |
Kops GJ, Weaver BA and Cleveland DW: On the road to cancer: Aneuploidy and the mitotic checkpoint. Nat Rev Cancer. 5:773–785. 2005. View Article : Google Scholar : PubMed/NCBI | |
Nicholson JM and Cimini D: How mitotic errors contribute to karyotypic diversity in cancer. Adv Cancer Res. 112:43–75. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fry AM, O'Regan L, Sabir SR and Bayliss R: Cell cycle regulation by the NEK family of protein kinases. J Cell Sci. 125:4423–4433. 2012.PubMed/NCBI | |
Fry AM, Meraldi P and Nigg EA: A centrosomal function for the human Nek2 protein kinase, a member of the NIMA family of cell cycle regulators. EMBO J. 17:470–481. 1998. View Article : Google Scholar : PubMed/NCBI | |
Li JJ and Li SA: Mitotic kinases: the key to duplication, segregation, and cytokinesis errors, chromosomal instability, and oncogenesis. Pharmacol Ther. 111:974–984. 2006. View Article : Google Scholar : PubMed/NCBI | |
Helps NR, Luo X, Barker HM and Cohen PT: NIMA-related kinase 2 (Nek2), a cell-cycle-regulated protein kinase localized to centrosomes, is complexed to protein phosphatase 1. Biochem J. 349:509–518. 2000. View Article : Google Scholar : PubMed/NCBI | |
Chotiner JY, Wolgemuth DJ and Wang PJ: Functions of cyclins and CDKs in mammalian gametogenesis†. Biol Reprod. 101:591–601. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jiang F, Luo F, Zeng N, Mao Y, Tang X, Wang J, Hu Y and Wu C: Characterization of fatty acid metabolism-related genes landscape for predicting prognosis and aiding immunotherapy in glioma patients. Front Immunol. 13:9021432022. View Article : Google Scholar : PubMed/NCBI | |
Ostrom QT, Bauchet L, Davis FG, Deltour I, Fisher JL, Langer CE, Pekmezci M, Schwartzbaum JA, Turner MC, Walsh KM, et al: The epidemiology of glioma in adults: A ‘state of the science’ review. Neuro Oncol. 16:896–913. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sturm D, Pfister SM and Jones DTW: Pediatric gliomas: Current concepts on diagnosis, biology, and clinical management. J Clin Oncol. 35:2370–2377. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ashby LS and Ryken TC: Management of malignant glioma: Steady progress with multimodal approaches. Neurosurg Focus. 20:E32006. View Article : Google Scholar : PubMed/NCBI | |
Andersen BM, Faust Akl C, Wheeler MA, Chiocca EA, Reardon DA and Quintana FJ: Glial and myeloid heterogeneity in the brain tumour microenvironment. Nat Rev Cancer. 21:786–802. 2021. View Article : Google Scholar : PubMed/NCBI | |
Martínez-Cerdeño V and Noctor SC: Neural progenitor cell terminology. Front Neuroanat. 12:1042018. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Guignard F, Zhao D, Liu L, Burns DK, Mason RP, Messing A and Parada LF: Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell. 8:119–130. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zarco N, Norton E, Quiñones-Hinojosa A and Guerrero-Cázares H: Overlapping migratory mechanisms between neural progenitor cells and brain tumor stem cells. Cell Mol Life Sci. 76:3553–3570. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zheng H, Ying H, Yan H, Kimmelman AC, Hiller DJ, Chen AJ, Perry SR, Tonon G, Chu GC, Ding Z, et al: p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature. 455:1129–1133. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jung E, Alfonso J, Osswald M, Monyer H, Wick W and Winkler F: Emerging intersections between neuroscience and glioma biology. Nat Neurosci. 22:1951–1960. 2019. View Article : Google Scholar : PubMed/NCBI | |
Schonberg DL, Lubelski D, Miller TE and Rich JN: Brain tumor stem cells: Molecular characteristics and their impact on therapy. Mol Aspects Med. 39:82–101. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kohwi M and Doe CQ: Temporal fate specification and neural progenitor competence during development. Nat Rev Neurosci. 14:823–838. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yabo YA, Niclou SP and Golebiewska A: Cancer cell heterogeneity and plasticity: A paradigm shift in glioblastoma. Neuro Oncol. 24:669–682. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lathia JD, Mack SC, Mulkearns-Hubert EE, Valentim CL and Rich JN: Cancer stem cells in glioblastoma. Genes Dev. 29:1203–1217. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Michowski W, Kolodziejczyk A and Sicinski P: The cell cycle in stem cell proliferation, pluripotency and differentiation. Nat Cell Biol. 21:1060–1067. 2019. View Article : Google Scholar : PubMed/NCBI | |
Meacham CE and Morrison SJ: Tumour heterogeneity and cancer cell plasticity. Nature. 501:328–337. 2013. View Article : Google Scholar : PubMed/NCBI | |
Roninson IB, Broude EV and Chang BD: If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells. Drug Resist Updat. 4:303–313. 2001. View Article : Google Scholar : PubMed/NCBI | |
Castro-Gamero AM, Pezuk JA, Brassesco MS and Tone LG: G2/M inhibitors as pharmacotherapeutic opportunities for glioblastoma: The old, the new, and the future. Cancer Biol Med. 15:354–374. 2018. View Article : Google Scholar : PubMed/NCBI |