1
|
Arnold M, Morgan E, Rumgay H, Mafra A,
Singh D, Laversanne M, Vignat J, Gralow JR, Cardoso F, Siesling S
and Soerjomataram I: Current and future burden of breast cancer:
Global statistics for 2020 and 2040. Breast. 66:15–23. 2022.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Fakhri N, Chad MA, Lahkim M, Houari A,
Dehbi H, Belmouden A and El Kadmiri N: Risk factors for breast
cancer in women: An update review. Med Oncol. 39:1972022.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Derakhshan F and Reis-Filho JS:
Pathogenesis of triple-negative breast cancer. Annu Rev Pathol.
17:181–204. 2022. View Article : Google Scholar : PubMed/NCBI
|
5
|
Wong GL, Manore SG, Doheny DL and Lo HW:
STAT family of transcription factors in breast cancer: Pathogenesis
and therapeutic opportunities and challenges. Semin Cancer Biol.
86:84–106. 2022. View Article : Google Scholar : PubMed/NCBI
|
6
|
Warburg O, Wind F and Negelein E: The
metabolism of tumors in the body. J Gen Physiol. 8:519–530. 1927.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Li S, Zeng H, Fan J, Wang F, Xu C, Li Y,
Tu J, Nephew KP and Long X: Glutamine metabolism in breast cancer
and possible therapeutic targets. Biochem Pharmacol.
210:1154642023. View Article : Google Scholar : PubMed/NCBI
|
8
|
Hamam R, Hamam D, Alsaleh KA, Kassem M,
Zaher W, Alfayez M, Aldahmash A and Alajez NM: Circulating
microRNAs in breast cancer: Novel diagnostic and prognostic
biomarkers. Cell Death Dis. 8:e30452017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Gyamfi J, Kim J and Choi J: Cancer as a
metabolic disorder. Int J Mol Sci. 23:11552022. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ling ZN, Jiang YF, Ru JN, Lu JH, Ding B
and Wu J: Amino acid metabolism in health and disease. Signal
Transduct Target Ther. 8:3452023. View Article : Google Scholar : PubMed/NCBI
|
11
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Guan Q, Liang S, Wang Z, Yang Y and Wang
S: ¹H NMR-based metabonomic analysis of the effect of optimized
rhubarb aglycone on the plasma and urine metabolic fingerprints of
focal cerebral ischemia-reperfusion rats. J Ethnopharmacol.
154:65–75. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Dudzik D, Barbas-Bernardos C, García A and
Barbas C: Quality assurance procedures for mass spectrometry
untargeted metabolomics. a review. J Pharm Biomed Anal.
147:149–173. 2018. View Article : Google Scholar : PubMed/NCBI
|
14
|
Huang S, Chong N, Lewis NE, Jia W, Xie G
and Garmire LX: Novel personalized pathway-based metabolomics
models reveal key metabolic pathways for breast cancer diagnosis.
Genome Med. 8:342016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Ogrodzinski MP, Teoh ST and Lunt SY:
Metabolomic profiling of mouse mammary tumor-derived cell lines
reveals targeted therapy options for cancer subtypes. Cell Oncol
(Dordr). 43:1117–1127. 2020. View Article : Google Scholar : PubMed/NCBI
|
16
|
Araújo R, Bispo D, Helguero LA and Gil AM:
Metabolomic studies of breast cancer in murine models: A review.
Biochim Biophys Acta Mol Basis Dis. 1866:1657132020. View Article : Google Scholar : PubMed/NCBI
|
17
|
Sharma U and Jagannathan NR: Magnetic
resonance imaging (MRI) and MR spectroscopic methods in
understanding breast cancer biology and metabolism. Metabolites.
12:2952022. View Article : Google Scholar : PubMed/NCBI
|
18
|
Choi MH: Mass spectrometry-based metabolic
signatures of sex steroids in breast cancer. Mol Cell Endocrinol.
466:81–85. 2018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Huan T, Forsberg EM, Rinehart D, Johnson
CH, Ivanisevic J, Benton HP, Fang M, Aisporna A, Hilmers B, Poole
FL, et al: Systems biology guided by XCMS Online metabolomics. Nat
Methods. 14:461–462. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Yuan M, Breitkopf SB, Yang X and Asara JM:
A positive/negative ion-switching, targeted mass spectrometry-based
metabolomics platform for bodily fluids, cells, and fresh and fixed
tissue. Nat Protoc. 7:872–881. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Griffin JL and Shockcor JP: Metabolic
profiles of cancer cells. Nat Rev Cancer. 4:551–561. 2004.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Kim YS, Maruvada P and Milner JA:
Metabolomics in biomarker discovery: Future uses for cancer
prevention. Future Oncol. 4:93–102. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Spratlin JL, Serkova NJ and Eckhardt SG:
Clinical applications of metabolomics in oncology: A review. Clin
Cancer Res. 15:431–440. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Mishra P and Ambs S: Metabolic signatures
of human breast cancer. Mol Cell Oncol. 3:e9922172015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Johnson CH, Manna SK, Krausz KW, Bonzo JA,
Divelbiss RD, Hollingshead MG and Gonzalez FJ: Global metabolomics
reveals urinary biomarkers of breast cancer in a mcf-7 ×enograft
mouse model. Metabolites. 3:658–672. 2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Johnson CH, Patterson AD, Idle JR and
Gonzalez FJ: Xenobiotic metabolomics: Major impact on the
metabolome. Annu Rev Pharmacol Toxicol. 52:37–56. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Szefel J, Danielak A and Kruszewski WJ:
Metabolic pathways of L-arginine and therapeutic consequences in
tumors. Adv Med Sci. 64:104–110. 2019. View Article : Google Scholar : PubMed/NCBI
|
28
|
Hu L, Gao Y, Cao Y, Zhang Y, Xu M, Wang Y,
Jing Y, Guo S, Jing F, Hu X and Zhu Z: Identification of arginine
and its ‘Downstream’ molecules as potential markers of breast
cancer. IUBMB Life. 68:817–822. 2016. View
Article : Google Scholar : PubMed/NCBI
|
29
|
Kim S, Lee M, Song Y, Lee SY, Choi I, Park
IS, Kim J, Kim JS, Kim KM and Seo HR: Argininosuccinate synthase 1
suppresses tumor progression through activation of
PERK/eIF2α/ATF4/CHOP axis in hepatocellular carcinoma. J Exp Clin
Cancer Res. 40:1272021. View Article : Google Scholar : PubMed/NCBI
|
30
|
Qiu F, Chen YR, Liu X, Chu CY, Shen LJ, Xu
J, Gaur S, Forman HJ, Zhang H, Zheng S, et al: Arginine starvation
impairs mitochondrial respiratory function in ASS1-deficient breast
cancer cells. Sci Signal. 7:ra312014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Park KG, Heys SD, Harris CI, Steele RJ,
McNurlan MA, Eremin O and Garlick PJ: Arginine metabolism in benign
and malignant disease of breast and colon: Evidence for possible
inhibition of tumor-infiltrating macrophages. Nutrition. 7:185–188.
1991.PubMed/NCBI
|
32
|
Vissers YL, Dejong CH, Luiking YC, Fearon
KC, von Meyenfeldt MF and Deutz NE: Plasma arginine concentrations
are reduced in cancer patients: Evidence for arginine deficiency?
Am J Clin Nutr. 81:1142–1146. 2005. View Article : Google Scholar : PubMed/NCBI
|
33
|
Geng D, Sun D, Zhang L and Zhang W: The
therapy of gefitinib towards breast cancer partially through
reversing breast cancer biomarker arginine. Afr Health Sci.
15:594–597. 2015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Navas LE and Carnero A: Nicotinamide
adenine dinucleotide (NAD) metabolism as a relevant target in
cancer. Cells. 11:26272022. View Article : Google Scholar : PubMed/NCBI
|
35
|
Yin J, Ren W, Huang X, Deng J, Li T and
Yin Y: Potential mechanisms connecting purine metabolism and cancer
therapy. Front Immunol. 9:16972018. View Article : Google Scholar : PubMed/NCBI
|
36
|
Ortea I, González-Fernández MJ,
Ramos-Bueno RP and Guil-Guerrero JL: Proteomics study reveals that
docosahexaenoic and arachidonic acids exert different in vitro
anticancer activities in colorectal cancer cells. J Agric Food
Chem. 66:6003–6012. 2018. View Article : Google Scholar : PubMed/NCBI
|
37
|
Chan TA, Morin PJ, Vogelstein B and
Kinzler KW: Mechanisms underlying nonsteroidal antiinflammatory
drug-mediatedapoptosis. Proc Natl Acad Sci USA. 95:681–686. 1998.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Li W, Guo X, Chen C and Li J: The
prognostic value of arachidonic acid metabolism in breast cancer by
integrated bioinformatics. Lipids Health Dis. 21:1032022.
View Article : Google Scholar : PubMed/NCBI
|