1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Duma N, Santana-Davila R and Molina JR:
Non-Small cell lung cancer: Epidemiology, screening, diagnosis, and
treatment. Mayo Clin Proc. 94:1623–1640. 2019. View Article : Google Scholar : PubMed/NCBI
|
3
|
Sateia HF, Choi Y, Stewart RW and Peairs
KS: Screening for lung cancer. Semin.Oncol. 44:74–82. 2017.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Shroff GS, de Groot PM,
Papadimitrakopoulou VA, Truong MT and Carter BW: Targeted therapy
and immunotherapy in the treatment of non-small cell lung cancer.
Radiol Clin North Am. 56:485–495. 2018. View Article : Google Scholar : PubMed/NCBI
|
5
|
López-Castro R, García-Peña T,
Mielgo-Rubio X, Riudavets M, Teixidó C, Vilariño N, Couñago F and
Mezquita L: Targeting molecular alterations in non-small-cell lung
cancer: What's next? Per Med. 19:341–359. 2022. View Article : Google Scholar : PubMed/NCBI
|
6
|
Luo W, Wang Z, Tian P and Li W: Safety and
tolerability of PD-1/PD-L1 inhibitors in the treatment of non-small
cell lung cancer: A meta-analysis of randomized controlled trials.
J Cancer Res Clin Oncol. 144:1851–1859. 2018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Planchard D, Popat S, Kerr K, Novello S,
Smit EF, Faivre-Finn C, Mok TS, Reck M, Van Schil PE, Hellmann MD,
et al: Metastatic non-small cell lung cancer: ESMO Clinical
Practice Guidelines for diagnosis, treatment and follow-up. Ann
Oncol. 29 (Suppl 4):iv192–iv237. 2018. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ganti AKP, Loo BW, Bassetti M, Blakely C,
Chiang A, D'Amico TA, D'Avella C, Dowlati A, Downey RJ, Edelman M,
et al: Small cell lung cancer, version 2.2022, NCCN clinical
practice guidelines in oncology. J Natl Compr Canc Netw.
19:1441–1464. 2021. View Article : Google Scholar : PubMed/NCBI
|
9
|
Cepeda V, Fuertes MA, Castilla J, Alonso
C, Quevedo C and Pérez JM: Biochemical mechanisms of cisplatin
cytotoxicity. Anticancer Agents Med Chem. 7:3–18. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Capriotti K, Capriotti JA, Lessin S, Wu S,
Goldfarb S, Belum VR and Lacouture ME: The risk of nail changes
with taxane chemotherapy: A systematic review of the literature and
meta-analysis. Br J Dermatol. 173:842–845. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
NIH National Heart, Lung and Blood
Institute, . What is anemia? https://www.nhlbi.nih.gov/health/anemiaOctober
4–2023
|
12
|
Rodgers DM III, Becker PS, Blinder M,
Cella D, Chanan-Khan A, Cleeland C, Coccia PF, Djulbegovic B,
Gilreath JA, Kraut EH, et al: Cancer- and chemotherapy-induced
anemia. J Natl Compr Canc Netw. 10:628–653. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Lagos-Quintana M, Rauhut R, Lendeckel W
and Tuschl T: Identification of novel genes coding for small
expressed RNAs. Science. 294:853–858. 2001. View Article : Google Scholar : PubMed/NCBI
|
14
|
Lau NC, Lim LP, Weinstein EG and Bartel
DP: An abundant class of tiny RNAs with probable regulatory roles
in Caenorhabditis elegans. Science. 294:858–862. 2001. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lee RC and Ambros V: An extensive class of
small RNAs in Caenorhabditis elegans. Science. 294:862–864. 2001.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Weber JA, Baxter DH, Zhang S, Huang DY,
Huang KH, Lee MJ, Galas DJ and Wang K: The microRNA spectrum in 12
body fluids. Clin Chem. 56:1733–1741. 2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Pereira TC: Introduction to the world of
microRNAs. Sociedade Brasileira de Genética; Ribeirão Preto,
Brazil: pp. 442015, (In Portuguese).
|
18
|
Zhong S, Golpon H, Zardo P and Borlak J:
miRNAs in lung cancer. A systematic review identifies predictive
and prognostic miRNA candidates for precision medicine in lung
cancer. Transl Res. 230:164–196. 2021. View Article : Google Scholar : PubMed/NCBI
|
19
|
Vasconcelos PE, Visacri MB, Pincinato EC,
Torso NG, Seguin CS, Zambon L, Barbeiro AS, Junior MW and Moriel P:
miRNAs as biomarkers of adverse drug reactions to platinum-based
agents in patients with non-small-cell lung cancer. Biomark Med.
15:1067–1069. 2021. View Article : Google Scholar : PubMed/NCBI
|
20
|
Karnofsky DA and Burchenal JH: The
clinical evaluation of chemotherapeutic agents. MacLeod CM:
Evaluation of chemotherapeutic agents. Columbia University Press;
New York, USA: pp. 1961946
|
21
|
U.S Department of Health and Human
Services, . Common Terminology Criteria for Adverse Events (CTCAE).
U.S Department of Health and Human Services, National Institutes of
Health, National Cancer Institute. Version 4.0. 2010, https://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03/Archive/CTCAE_4.0_2009-05-29.xlsMarch
11–2024
|
22
|
Vlachos IS, Zagganas K, Paraskevopoulou
MD, Georgakilas G, Karagkouni D, Vergoulis T, Dalamagas T and
Hatzigeorgiou AG: DIANA-miRPath v3. 0: deciphering microRNA
function with experimental support. Nucleic Acids Res.
43:W460–W466. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Rotor-Gene Q 2.3.5-Windows platforms.
https://www.qiagen.com/us/resources/resourcedetail?id=9d8bda8e-1fd7-4519-a1ff-b60bba526b57&lang=enJanuary
30–2024
|
24
|
Schmittgen TD and Livak KJ: Analyzing
real-time PCR data by the comparative C(T) method. Nat Protoc.
3:1101–1108. 2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Dweep H and Gretz N: MiRWalk2.0: A
comprehensive atlas of microRNA-target interactions. Nat Methods.
12:6972015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Huang da W, Sherman BT and Lempicki RA:
Systematic and integrative analysis of large gene lists using DAVID
Bioinformatics Resources. Nature Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Warde-Farley D, Donaldson SL, Comes O,
Zuberi K, Badrawi R, Chao P, Franz M, Grouios C, Kazi F, Lopes CT,
et al: The GeneMANIA prediction server: Biological network
integration for gene prioritization and predicting gene function.
Nucleic Acids Res. 38:W214–W220. 2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhao Y, Yan M, Yun Y, Zhang J, Zhang R, Li
Y, Wu X, Liu Q, Miao W and Jiang H: MicroRNA-455-3p functions as a
tumor suppressor by targeting eIF4E in prostate cancer. Oncol Rep.
37:2449–2458. 2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Yang H, Wei YN, Zhou J, Hao TT and Liu XL:
MiR-455-3p acts as a prognostic marker and inhibits the
proliferation and invasion of esophageal squamous cell carcinoma by
targeting FAM83F. Eur Rev Med Pharmacol Sci. 21:3200–3206.
2017.PubMed/NCBI
|
30
|
Gao X, Zhao H, Diao C, Wang X, Xie Y, Liu
Y, Han J and Zhang M: miR-455-3p serves as prognostic factor and
regulates the proliferation and migration of non-small cell lung
cancer through targeting HOXB5. Biochem Biophys Res Commun.
495:1074–1080. 2018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Guo J, Liu C, Wang W, Liu Y, He H, Chen C,
Xiang R and Luo Y: Identification of serum miR-1915-3p and
miR-455-3p as biomarkers for breast cancer. PLoS One.
13:e02007162018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Yi X, Wang Y and Xu S: MiR-455-3p
downregulation facilitates cell proliferation and invasion and
predicts poor prognosis of osteosarcoma. J Orthop Surg Res.
15:4542020. View Article : Google Scholar : PubMed/NCBI
|
33
|
Lam K and Zhang DE: RUNX1 and RUNX1-ETO:
Roles in hematopoiesis and leukemogenesis. Front Biosci (Landmark
Ed). 17:1120–1139. 2012. View
Article : Google Scholar : PubMed/NCBI
|
34
|
Okuda T, Nishimura M, Nakao M and Fujita
Y: RUNX1/AML1: A central player in hematopoiesis. Int J Hematol.
74:252–257. 2001. View Article : Google Scholar : PubMed/NCBI
|
35
|
Ichikawa M, Yoshimi A, Nakagawa M,
Nishimoto N, Watanabe-Okochi N and Kurokawa M: A role for RUNX1 in
hematopoiesis and myeloid leukemia. Int J Hematol. 97:726–734.
2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Lécuyer E and Hoang T: SCL: From the
origin of hematopoiesis to stem cells and leukemia. Exp Hematol.
32:11–24. 2004. View Article : Google Scholar : PubMed/NCBI
|
37
|
Vagapova ER, Spirin PV, Lebedev TD and
Prassolov VS: The Role of TAL1 in hematopoiesis and leukemogenesis.
Acta Naturae. 10:15–23. 2018. View Article : Google Scholar : PubMed/NCBI
|
38
|
Reynaud D, Ravet E, Titeux M, Mazurier F,
Rénia L, Dubart-Kupperschmitt A, Roméo PH and Pflumio F: SCL/TAL1
expression level regulates human hematopoietic stem cell
self-renewal and engraftment. Blood. 106:2318–2328. 2005.
View Article : Google Scholar : PubMed/NCBI
|