Non‑coding RNA: A promising diagnostic biomarker and therapeutic target for esophageal squamous cell carcinoma (Review)
- Authors:
- Longze Zhang
- Yanyang Wang
- Jianmei Gao
- Xue Zhou
- Minglei Huang
- Xianyao Wang
- Zhixu He
-
Affiliations: Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China, Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China - Published online on: April 9, 2024 https://doi.org/10.3892/ol.2024.14388
- Article Number: 255
-
Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Rogers JE, Sewastjanow-Silva M, Waters RE and Ajani JA: Esophageal cancer: Emerging therapeutics. Expert Opin Ther Targets. 26:107–117. 2022. View Article : Google Scholar : PubMed/NCBI | |
Morgan E, Soerjomataram I, Rumgay H, Coleman HG, Thrift AP, Vignat J, Laversanne M, Ferlay J and Arnold M: The global landscape of esophageal squamous cell carcinoma and esophageal adenocarcinoma incidence and mortality in 2020 and projections to 2040: New estimates from GLOBOCAN 2020. Gastroenterology. 163:649–658.e2. 2022. View Article : Google Scholar : PubMed/NCBI | |
He S, Xu J, Liu X and Zhen Y: Advances and challenges in the treatment of esophageal cancer. Acta Pharm Sin B. 11:3379–3392. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rumgay H, Arnold M, Laversanne M, Whiteman DC, Thrift AP, Wei W, Lemmens VEPP and Soerjomataram I: International trends in esophageal squamous cell carcinoma and adenocarcinoma incidence. Am J Gastroenterol. 116:1072–1076. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li J, Xu J, Zheng Y, Gao Y, He S, Li H, Zou K, Li N, Tian J, Chen W and He J: Esophageal cancer: Epidemiology, risk factors and screening. Chin J Cancer Res. 33:535–547. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bhat AA, Nisar S, Maacha S, Carneiro-Lobo TC, Akhtar S, Siveen KS, Wani NA, Rizwan A, Bagga P, Singh M, et al: Cytokine-chemokine network driven metastasis in esophageal cancer; promising avenue for targeted therapy. Mol Cancer. 20:22021. View Article : Google Scholar : PubMed/NCBI | |
Huang FL and Yu SJ: Esophageal cancer: Risk factors, genetic association, and treatment. Asian J Surg. 41:210–215. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mattick JS and Makunin IV: Non-coding RNA. Hum Mol Genet. 15:R17–R29. 2006. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Liu X, Lin C, Jia X, Zhu H, Song J and Zhang Y: Noncoding RNAs regulate alternative splicing in cancer. J Exp Clin Cancer Res. 40:112021. View Article : Google Scholar : PubMed/NCBI | |
Mohapatra S, Pioppini C, Ozpolat B and Calin GA: Non-coding RNAs regulation of macrophage polarization in cancer. Mol Cancer. 20:242021. View Article : Google Scholar : PubMed/NCBI | |
Poller W, Sahoo S, Hajjar R, Landmesser U and Krichevsky AM: Exploration of the noncoding genome for human-specific therapeutic targets-recent insights at molecular and cellular level. Cells. 12:26602023. View Article : Google Scholar : PubMed/NCBI | |
Beermann J, Piccoli MT, Viereck J and Thum T: Non-coding RNAs in development and disease: Background, mechanisms, and therapeutic approaches. Physiol Rev. 96:1297–1325. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhou B, Yang H, Yang C, Bao YL, Yang SM, Liu J and Xiao YF: Translation of noncoding RNAs and cancer. Cancer Lett. 497:89–99. 2021. View Article : Google Scholar : PubMed/NCBI | |
Slack FJ and Chinnaiyan AM: The role of non-coding RNAs in oncology. Cell. 179:1033–1055. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ran H, Yang Y, Luo M, Liu X, Yue B, Chai Z, Zhong J and Wang H: Molecular regulation of yak preadipocyte differentiation and proliferation by LncFAM200B and ceRNA regulatory network analysis. Cells. 11:23662022. View Article : Google Scholar : PubMed/NCBI | |
Min X, Cai MY, Shao T, Xu ZY, Liao Z, Liu DL, Zhou MY, Wu WP, Zhou YL, Mo MH, et al: A circular intronic RNA ciPVT1 delays endothelial cell senescence by regulating the miR-24-3p/CDK4/pRb axis. Aging Cell. 21:e135292022. View Article : Google Scholar : PubMed/NCBI | |
Qu J, Xiong X, Hujie G, Ren J, Yan L and Ma L: MicroRNA-132-3p alleviates neuron apoptosis and impairments of learning and memory abilities in Alzheimer's disease by downregulation of HNRNPU stabilized BACE1. Cell Cycle. 20:2309–2320. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu CX, Guo SK, Nan F, Xu YF, Yang L and Chen LL: RNA circles with minimized immunogenicity as potent PKR inhibitors. Mol Cell. 82:420–434.e6. 2022. View Article : Google Scholar : PubMed/NCBI | |
Feng Q, Zhang H, Yao D, Chen WD and Wang YD: Emerging role of non-coding RNAs in esophageal squamous cell carcinoma. Int J Mol Sci. 21:2582019. View Article : Google Scholar : PubMed/NCBI | |
Miyoshi J, Zhu Z, Luo A, Toden S, Zhou X, Izumi D, Kanda M, Takayama T, Parker IM, Wang M, et al: A microRNA-based liquid biopsy signature for the early detection of esophageal squamous cell carcinoma: A retrospective, prospective and multicenter study. Mol Cancer. 21:442022. View Article : Google Scholar : PubMed/NCBI | |
Sharma U, Murmu M, Barwal TS, Tuli HS, Jain M, Prakash H, Kaceli T, Jain A and Bishayee A: A pleiotropic role of long non-coding RNAs in the modulation of Wnt/β-catenin and PI3K/Akt/mTOR signaling pathways in esophageal squamous cell carcinoma: Implication in chemotherapeutic drug response. Curr Oncol. 29:2326–2349. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Liu WR, Tan S, Zhou JK, Xu X, Ming Y, Cheng J, Li J, Zeng Z, Zuo Y, et al: Characterization of distinct circular RNA signatures in solid tumors. Mol Cancer. 21:632022. View Article : Google Scholar : PubMed/NCBI | |
Jansson MD and Lund AH: MicroRNA and cancer. Mol Oncol. 6:590–610. 2012. View Article : Google Scholar : PubMed/NCBI | |
Acunzo M and Croce CM: MicroRNA in cancer and cachexia-a mini-review. J Infect Dis. 212 (Suppl 1):S74–S77. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mengistu AA and Tenkegna TA: The role of miRNA in plant-virus interaction: A review. Mol Biol Rep. 48:2853–2861. 2021. View Article : Google Scholar : PubMed/NCBI | |
Peng Y and Croce CM: The role of MicroRNAs in human cancer. Signal Transduct Target Ther. 1:150042016. View Article : Google Scholar : PubMed/NCBI | |
Wahid F, Shehzad A, Khan T and Kim YY: MicroRNAs: Synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta. 1803:1231–1243. 2010. View Article : Google Scholar : PubMed/NCBI | |
Budakoti M, Panwar AS, Molpa D, Singh RK, Büsselberg D, Mishra AP, Coutinho HDM and Nigam M: Micro-RNA: The darkhorse of cancer. Cell Signal. 83:1099952021. View Article : Google Scholar : PubMed/NCBI | |
Krol J, Loedige I and Filipowicz W: The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 11:597–610. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wilson RC, Tambe A, Kidwell MA, Noland CL, Schneider CP and Doudna JA: Dicer-TRBP complex formation ensures accurate mammalian microRNA biogenesis. Mol Cell. 57:397–407. 2015. View Article : Google Scholar : PubMed/NCBI | |
He B, Zhao Z, Cai Q, Zhang Y, Zhang P, Shi S, Xie H, Peng X, Yin W, Tao Y and Wang X: miRNA-based biomarkers, therapies, and resistance in cancer. Int J Biol Sci. 16:2628–2647. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ha M and Kim VN: Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 15:509–524. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ho PTB, Clark IM and Le LTT: MicroRNA-based diagnosis and therapy. Int J Mol Sci. 23:71972022. View Article : Google Scholar | |
Iqbal MA, Arora S, Prakasam G, Calin GA and Syed MA: MicroRNA in lung cancer: Role, mechanisms, pathways and therapeutic relevance. Mol Aspects Med. 70:3–20. 2019. View Article : Google Scholar : PubMed/NCBI | |
O'Brien J, Hayder H, Zayed Y and Peng C: Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 9:4022018. View Article : Google Scholar : PubMed/NCBI | |
Medley JC, Panzade G and Zinovyeva AY: microRNA strand selection: Unwinding the rules. Wiley Interdiscip Rev RNA. 12:e16272021. View Article : Google Scholar : PubMed/NCBI | |
Bartel DP: Metazoan MicroRNAs. Cell. 173:20–51. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sun Q, Hao Q and Prasanth KV: Nuclear long noncoding RNAs: Key regulators of gene expression. Trends Genet. 34:142–157. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cao Q, Guo Z, Yan Y, Wu J and Song C: Exosomal long noncoding RNAs in aging and age-related diseases. IUBMB Life. 71:1846–1856. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kour S and Rath PC: Long noncoding RNAs in aging and age-related diseases. Ageing Res Rev. 26:1–21. 2016. View Article : Google Scholar : PubMed/NCBI | |
Statello L, Guo CJ, Chen LL and Huarte M: Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 22:96–118. 2021. View Article : Google Scholar : PubMed/NCBI | |
He Z, Yang D, Fan X, Zhang M, Li Y, Gu X and Yang M: The roles and mechanisms of lncRNAs in liver fibrosis. Int J Mol Sci. 21:14822020. View Article : Google Scholar : PubMed/NCBI | |
Aboudehen K: Regulation of mTOR signaling by long non-coding RNA. Biochim Biophys Acta Gene Regul Mech. 1863:1944492020. View Article : Google Scholar : PubMed/NCBI | |
Jain AK, Xi Y, McCarthy R, Allton K, Akdemir KC, Patel LR, Aronow B, Lin C, Li W, Yang L, et al: LncPRESS1 Is a p53-regulated LncRNA that safeguards pluripotency by disrupting SIRT6-mediated de-acetylation of histone H3K56. Mol Cell. 64:967–981. 2016. View Article : Google Scholar : PubMed/NCBI | |
Du Z, Wen X, Wang Y, Jia L, Zhang S, Liu Y, Zhou L, Li H, Yang W, Wang C, et al: Chromatin lncRNA Platr10 controls stem cell pluripotency by coordinating an intrachromosomal regulatory network. Genome Biol. 22:2332021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Huang YX, Wang DL, Yang B, Yan HY, Lin LH, Li Y, Chen J, Xie LM, Huang YS, et al: LncRNA DSCAM-AS1 interacts with YBX1 to promote cancer progression by forming a positive feedback loop that activates FOXA1 transcription network. Theranostics. 10:10823–10837. 2020. View Article : Google Scholar : PubMed/NCBI | |
Su K, Wang N, Shao Q, Liu H, Zhao B and Ma S: The role of a ceRNA regulatory network based on lncRNA MALAT1 site in cancer progression. Biomed Pharmacother. 137:1113892021. View Article : Google Scholar : PubMed/NCBI | |
Huang W, Sun YM, Pan Q, Fang K, Chen XT, Zeng ZC, Chen TQ, Zhu SX, Huang LB, Luo XQ, et al: The snoRNA-like lncRNA LNC-SNO49AB drives leukemia by activating the RNA-editing enzyme ADAR1. Cell Discov. 8:1172022. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Ye T, Liu H, Lv P, Duan C, Wu X, Jiang K, Lu H, Xia D, Peng E, et al: Expression profiles, biological functions and clinical significance of circRNAs in bladder cancer. Mol Cancer. 20:42021. View Article : Google Scholar : PubMed/NCBI | |
Hu Q and Zhou T: EIciRNA-mediated gene expression: Tunability and bimodality. FEBS Lett. 592:3460–3471. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhou X and Du J: CircRNAs: Novel therapeutic targets in multiple myeloma. Mol Biol Rep. 49:10667–10676. 2022. View Article : Google Scholar : PubMed/NCBI | |
Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI | |
Vahabi A, Rezaie J, Hassanpour M, Panahi Y and Nemati M, Rasmi Y and Nemati M: Tumor cells-derived exosomal CircRNAs: Novel cancer drivers, molecular mechanisms, and clinical opportunities. Biochem Pharmacol. 200:1150382022. View Article : Google Scholar : PubMed/NCBI | |
Amicone L, Marchetti A and Cicchini C: Exosome-associated circRNAs as key regulators of EMT in cancer. Cells. 11:17162022. View Article : Google Scholar : PubMed/NCBI | |
Guo X, Chang X, Wang Z, Jiang C and Wei Z: CircRNAs: Promising factors for regulating angiogenesis in colorectal cancer. Clin Transl Oncol. 24:1673–1681. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li X, Yang L and Chen LL: The biogenesis, functions, and challenges of circular RNAs. Mol Cell. 71:428–442. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function as efficient microRNA sponges. Nature. 495:384–388. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang LX, Gao J, Long X, Zhang PF, Yang X, Zhu SQ, Pei X, Qiu BQ, Chen SW, Lu F, et al: The circular RNA circHMGB2 drives immunosuppression and anti-PD-1 resistance in lung adenocarcinomas and squamous cell carcinomas via the miR-181a-5p/CARM1 axis. Mol Cancer. 21:1102022. View Article : Google Scholar : PubMed/NCBI | |
Hollensen AK, Thomsen HS, Lloret-Llinares M, Kamstrup AB, Jensen JM, Luckmann M, Birkmose N, Palmfeldt J, Jensen TH, Hansen TB and Damgaard CK: circZNF827 nucleates a transcription inhibitory complex to balance neuronal differentiation. Elife. 9:e584782020. View Article : Google Scholar : PubMed/NCBI | |
Misir S, Wu N and Yang BB: Specific expression and functions of circular RNAs. Cell Death Differ. 29:481–491. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, et al: Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 22:256–264. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Ma R, Zhang X, Cui L, Ding Y, Shi W, Guo C and Shi Y: Crosstalk between N6-methyladenosine modification and circular RNAs: Current understanding and future directions. Mol Cancer. 20:1212021. View Article : Google Scholar : PubMed/NCBI | |
Lin H, Wang Y, Wang P, Long F and Wang T: Mutual regulation between N6-methyladenosine (m6A) modification and circular RNAs in cancer: Impacts on therapeutic resistance. Mol Cancer. 21:1482022. View Article : Google Scholar : PubMed/NCBI | |
Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, Pestova TV, Qian SB and Jaffrey SR: 5′ UTR m(6)A promotes cap-independent translation. Cell. 163:999–1010. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li R, Jiang J, Shi H, Qian H, Zhang X and Xu W: CircRNA: A rising star in gastric cancer. Cell Mol Life Sci. 77:1661–1680. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, Jin Y, Yang Y, Chen LL, Wang Y, et al: Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 27:626–641. 2017. View Article : Google Scholar : PubMed/NCBI | |
Duan JL, Chen W, Xie JJ, Zhang ML, Nie RC, Liang H, Mei J, Han K, Xiang ZC, Wang FW, et al: A novel peptide encoded by N6-methyladenosine modified circMAP3K4 prevents apoptosis in hepatocellular carcinoma. Mol Cancer. 21:932022. View Article : Google Scholar : PubMed/NCBI | |
Lei M, Zheng G, Ning Q, Zheng J and Dong D: Translation and functional roles of circular RNAs in human cancer. Mol Cancer. 19:302020. View Article : Google Scholar : PubMed/NCBI | |
Song Y, Li L, Ou Y, Gao Z, Li E, Li X, Zhang W, Wang J, Xu L, Zhou Y, et al: Identification of genomic alterations in oesophageal squamous cell cancer. Nature. 509:91–95. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yu XM, Li SJ, Yao ZT, Xu JJ, Zheng CC, Liu ZC, Ding PB, Jiang ZL, Wei X, Zhao LP, et al: N4-acetylcytidine modification of lncRNA CTC-490G23.2 promotes cancer metastasis through interacting with PTBP1 to increase CD44 alternative splicing. Oncogene. 42:1101–1116. 2023. View Article : Google Scholar : PubMed/NCBI | |
Huang X, Liu C, Li H, Dai T, Luo G, Zhang C, Li T and Lü M: Hypoxia-responsive lncRNA G077640 promotes ESCC tumorigenesis via the H2AX-HIF1α-glycolysis axis. Carcinogenesis. 44:383–393. 2023. View Article : Google Scholar : PubMed/NCBI | |
Xiao Z, Feng X, Zhou Y, Li P, Luo J, Zhang W, Zhou J, Zhao J, Wang D, Wang Y, et al: Exosomal miR-10527-5p inhibits migration, invasion, lymphangiogenesis and lymphatic metastasis by affecting Wnt/β-catenin signaling via Rab10 in esophageal squamous cell carcinoma. Int J Nanomedicine. 18:95–114. 2023. View Article : Google Scholar : PubMed/NCBI | |
Cui Y, Zhang C, Ma S, Li Z, Wang W, Li Y, Ma Y, Fang J, Wang Y, Cao W and Guan F: RNA m6A demethylase FTO-mediated epigenetic up-regulation of LINC00022 promotes tumorigenesis in esophageal squamous cell carcinoma. J Exp Clin Cancer Res. 40:2942021. View Article : Google Scholar : PubMed/NCBI | |
Ren K, Li Y, Lu H, Li Z, Li Z, Wu K, Li Z and Han X: Long noncoding RNA HOTAIR controls cell cycle by functioning as a competing endogenous RNA in esophageal squamous cell carcinoma. Transl Oncol. 9:489–497. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xu T, Hu Y, Zhao Y, Qi Y, Zhang S and Li P: Hsa_circ_0046534 accelerates esophageal squamous cell carcinoma proliferation and metastasis via regulating MMP2 expression by sponging miR-339-5p. Cell Signal. 112:1109062023. View Article : Google Scholar : PubMed/NCBI | |
Xian D, Yang S, Liu Y, Liu Q, Huang D and Wu Y: MicroRNA-196a-5p facilitates the onset and progression via targeting ITM2B in esophageal squamous cell carcinoma. Pathol Int. 74:129–138. 2024. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Dong X, Guo X, Li C, Fan Y, Liu P, Yuan D, Ma X, Wang J, Zheng J, et al: LncRNA-BC069792 suppresses tumor progression by targeting KCNQ4 in breast cancer. Mol Cancer. 22:412023. View Article : Google Scholar : PubMed/NCBI | |
Liu QL, Zhang Z, Wei X and Zhou ZG: Noncoding RNAs in tumor metastasis: Molecular and clinical perspectives. Cell Mol Life Sci. 78:6823–6850. 2021. View Article : Google Scholar : PubMed/NCBI | |
Enkhnaran B, Zhang GC, Zhang NP, Liu HN, Wu H, Xuan S, Yu XN, Song GQ, Shen XZ, Zhu JM, et al: microRNA-106b-5p promotes cell growth and sensitizes chemosensitivity to sorafenib by targeting the BTG3/Bcl-xL/p27 signaling pathway in hepatocellular carcinoma. J Oncol. 2022:19715592022. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Peng D, Gan M, He Z and Kuang Y: CPEB3 overexpression caused by miR-106b-5p inhibition inhibits esophageal carcinoma in-vitro progression and metastasis. Anticancer Drugs. 33:335–351. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yang F, Sun Z, Wang D and Du T: MiR-106b-5p regulates esophageal squamous cell carcinoma progression by binding to HPGD. BMC Cancer. 22:3082022. View Article : Google Scholar : PubMed/NCBI | |
Deng W, Fan W, Li P, Yao J, Qi J, Chi H, Ji G and Zhao J: microRNA-497-mediated Smurf2/YY1/HIF2α axis in tumor growth and metastasis of esophageal squamous cell carcinoma. J Biochem Mol Toxicol. 36:e231822022. View Article : Google Scholar : PubMed/NCBI | |
He Z, Chen J, Chen X, Wang H, Tang L and Han C: microRNA-377 acts as a suppressor in esophageal squamous cell carcinoma through CBX3-dependent P53/P21 pathway. J Cell Physiol. 236:107–120. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ren L, Fang X, Shrestha SM, Ji Q, Ye H, Liang Y, Liu Y, Feng Y, Dong J and Shi R: LncRNA SNHG16 promotes development of oesophageal squamous cell carcinoma by interacting with EIF4A3 and modulating RhoU mRNA stability. Cell Mol Biol Lett. 27:892022. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Zeng T, Liu Z, He W, Hu M, Tang T, Chen L and Xing L: Long noncoding RNA GK-IT1 promotes esophageal squamous cell carcinoma by regulating MAPK1 phosphorylation. Cancer Med. 11:4555–4574. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xue ST, Zheng B, Cao SQ, Ding JC, Hu GS, Liu W and Chen C: Long non-coding RNA LINC00680 functions as a ceRNA to promote esophageal squamous cell carcinoma progression through the miR-423-5p/PAK6 axis. Mol Cancer. 21:692022. View Article : Google Scholar : PubMed/NCBI | |
Xiong G, Diao D, Lu D, Liu X, Liu Z, Mai S, Feng S, Dong X and Cai K: Circular RNA circNELL2 acts as the sponge of miR-127-5p to promote esophageal squamous cell carcinoma progression. Onco Targets Ther. 13:9245–9255. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Qin X, Bian W, Li Y, Shan B, Yao Z and Li S: Exosomal lncRNA ZFAS1 regulates esophageal squamous cell carcinoma cell proliferation, invasion, migration and apoptosis via microRNA-124/STAT3 axis. J Exp Clin Cancer Res. 38:4772019. View Article : Google Scholar : PubMed/NCBI | |
Tian Z, Li Z, Zhu Y, Meng L, Liu F, Sang M and Wang G: Hypermethylation-mediated inactivation of miR-124 predicts poor prognosis and promotes tumor growth at least partially through targeting EZH2/H3K27me3 in ESCC. Clin Exp Metastasis. 36:381–391. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zeng B, Liu Z, Zhu H, Zhang X, Yang W, Li X and Cheng C: CircRNA_2646 functions as a ceRNA to promote progression of esophageal squamous cell carcinoma via inhibiting miR-124/PLP2 signaling pathway. Cell Death Discov. 7:992021. View Article : Google Scholar : PubMed/NCBI | |
Yao D, Lin S, Chen S and Wang Z: circHIPK3 regulates cell proliferation and migration by sponging microRNA-124 and regulating serine/threonine kinase 3 expression in esophageal squamous cell carcinoma. Bioengineered. 13:9767–9780. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cheng J, Ma H, Yan M, Zhang Z and Xing W: Circ_0007624 suppresses the development of esophageal squamous cell carcinoma via targeting miR-224-5p/CPEB3 to inactivate the EGFR/PI3K/AKT signaling. Cell Signal. 99:1104482022. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Yao N, Gu H, Song Y, Ye Z, Li L, Lu P and Shao Q: Circular RNA_LARP4 sponges miR-1323 and hampers progression of esophageal squamous cell carcinoma through modulating PTEN/PI3K/AKT pathway. Dig Dis Sci. 65:2272–2283. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jiang Q, Wang H, Yuan D, Qian X, Ma X, Yan M and Xing W: Circular_0086414 induces SPARC like 1 (SPARCL1) production to inhibit esophageal cancer cell proliferation, invasion and glycolysis and induce cell apoptosis by sponging miR-1290. Bioengineered. 13:12099–12114. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zheng S, Liu B and Guan X: The role of tumor microenvironment in invasion and metastasis of esophageal squamous cell carcinoma. Front Oncol. 12:9112852022. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Han J, Liu Y, Hu J, Li M, Chen X and Xu L: miR-17-5p and miR-4443 promote esophageal squamous cell carcinoma development by targeting TIMP2. Front Oncol. 11:6058942021. View Article : Google Scholar : PubMed/NCBI | |
Liang Y, Duan L, Lu J and Xia J: Engineering exosomes for targeted drug delivery. Theranostics. 11:3183–3195. 2021. View Article : Google Scholar : PubMed/NCBI | |
Paskeh MDA, Entezari M, Mirzaei S, Zabolian A, Saleki H, Naghdi MJ, Sabet S, Khoshbakht MA, Hashemi M, Hushmandi K, et al: Emerging role of exosomes in cancer progression and tumor microenvironment remodeling. J Hematol Oncol. 15:832022. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Li P, Li J, Qi Q, Sun Z, Shi S, Xie Y, Liu S, Wang Y, Du L and Wang C: Exosomal and intracellular miR-320b promotes lymphatic metastasis in esophageal squamous cell carcinoma. Mol Ther Oncolytics. 23:163–180. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cui D, Zhu Y, Yan D, Lee NPY, Han L, Law S, Tsao GSW and Cheung ALM: Dual inhibition of cMET and EGFR by microRNA-338-5p suppresses metastasis of esophageal squamous cell carcinoma. Carcinogenesis. 42:995–1007. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhao R, Shan Y, Zhou X, Zhang C, Zhao R, Zhao L and Shan B: MicroRNA-485-5p suppresses the progression of esophageal squamous cell carcinoma by targeting flotillin-1 and inhibits the epithelial-mesenchymal transition. Oncol Rep. 45:932021. View Article : Google Scholar : PubMed/NCBI | |
Cheng W, Yang F and Ma Y: lncRNA TPT1-AS1 promotes cell migration and invasion in esophageal squamous-cell carcinomas by regulating the miR-26a/HMGA1 axis. Open Med (Wars). 18:202205332023. View Article : Google Scholar : PubMed/NCBI | |
Yang R, Wan J, Ma L, Zhou F, Yang Z, Li Z, Zhang M and Ming L: TMEM44-AS1 promotes esophageal squamous cell carcinoma progression by regulating the IGF2BP2-GPX4 axis in modulating ferroptosis. Cell Death Discov. 9:4312023. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Huang TJ, Mei Y, Luo FF, Xie DH, Peng LX, Liu BQ, Fan ML, Zhang JB, Zheng ST, et al: Novel long noncoding RNA LINC02820 augments TNF signaling pathway to remodel cytoskeleton and potentiate metastasis in esophageal squamous cell carcinoma. Cancer Gene Ther. 30:375–387. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li H, Lin PH, Gupta P, Li X, Zhao SL, Zhou X, Li Z, Wei S, Xu L, Han R, et al: MG53 suppresses tumor progression and stress granule formation by modulating G3BP2 activity in non-small cell lung cancer. Mol Cancer. 20:1182021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Yue C, Krichevsky AM and Garkavtsev I: Repression of the stress granule protein G3BP2 inhibits immune checkpoint molecule PD-L1. Mol Oncol. Feb 1–2021.(Epub ahead of print). | |
Zheng Y, Wu J, Deng R, Lin C, Huang Y, Yang X, Wang C, Yang M, He Y, Lu J, et al: G3BP2 regulated by the lncRNA LINC01554 facilitates esophageal squamous cell carcinoma metastasis through stabilizing HDGF transcript. Oncogene. 41:515–526. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Wang Y, Zhang W, Wu Q, Fan J and Zhan Q: BAALC-AS1/G3BP2/c-Myc feedback loop promotes cell proliferation in esophageal squamous cell carcinoma. Cancer Commun (Lond). 41:240–257. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wu K, Wang Z, Huang Y, Yao L, Kang N, Ge W, Zhang R and He W: LncRNA PTPRG-AS1 facilitates glycolysis and stemness properties of esophageal squamous cell carcinoma cells through miR-599/PDK1 axis. J Gastroenterol Hepatol. 37:507–517. 2022. View Article : Google Scholar : PubMed/NCBI | |
Shi Y, Fang N, Li Y, Guo Z, Jiang W, He Y, Ma Z and Chen Y: Circular RNA LPAR3 sponges microRNA-198 to facilitate esophageal cancer migration, invasion, and metastasis. Cancer Sci. 111:2824–2836. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xu Z, Tie X, Li N, Yi Z, Shen F and Zhang Y: Circular RNA hsa_circ_0000654 promotes esophageal squamous cell carcinoma progression by regulating the miR-149-5p/IL-6/STAT3 pathway. IUBMB Life. 72:426–439. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Wang Q, Gong Y, Hu Q, Zhang H, Ke S and Chen Y: Knockdown of circRNA circ_0087378 represses the tumorigenesis and progression of esophageal squamous cell carcinoma through modulating the miR-140-3p/E2F3 axis. Front Oncol. 10:6072312021. View Article : Google Scholar : PubMed/NCBI | |
Brown MS, Muller KE and Pattabiraman DR: Quantifying the epithelial-to-mesenchymal transition (EMT) from bench to bedside. Cancers (Basel). 14:11382022. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Hong W and Wei X: The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J Hematol Oncol. 15:1292022. View Article : Google Scholar : PubMed/NCBI | |
Zhu C, Bi W, Li H and Wang W: CircLONP2 accelerates esophageal squamous cell carcinoma progression via direct MiR-27b-3p-ZEB1 axis. Front Oncol. 12:8228392022. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Sun H, Zhao Y, Zhang J, Xiong G, Cui Y and Lei C: CircRNA circ_0004370 promotes cell proliferation, migration, and invasion and inhibits cell apoptosis of esophageal cancer via miR-1301-3p/COL1A1 axis. Open Med (Wars). 16:104–116. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xu P, Wang L, Liu Q, Gao P, Hu F, Xie X, Jiang L, Bi R, Ding F, Yang Q and Xiao H: The abnormal expression of circ-ARAP2 promotes ESCC progression through regulating miR-761/FOXM1 axis-mediated stemness and the endothelial-mesenchymal transition. J Transl Med. 20:3182022. View Article : Google Scholar : PubMed/NCBI | |
Song B, Liu X, Dong H and Roy R: miR-140-3P induces chemotherapy resistance in esophageal carcinoma by targeting the NFYA-MDR1 axis. Appl Biochem Biotechnol. 195:973–991. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhao F, Tian H, Wang Y, Zhang J, Liu F and Fu L: LINC01004-SPI1 axis-activated SIGLEC9 in tumor-associated macrophages induces radioresistance and the formation of immunosuppressive tumor microenvironment in esophageal squamous cell carcinoma. Cancer Immunol Immunother. 72:1835–1851. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Liu Y, Huang X, Cheng Y, Qian Z, Ni X, Chen S, Lin M and Luo J: LncRNA DGCR5 silencing enhances the radio-sensitivity of human esophageal squamous cell carcinoma via negatively regulating the Warburg effect. Radiat Res. 199:264–272. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zuo J, Zhao M, Fan Z, Liu B, Wang Y, Li Y, Lv P, Xing L, Zhang X and Shen H: MicroRNA-153-3p regulates cell proliferation and cisplatin resistance via Nrf-2 in esophageal squamous cell carcinoma. Thorac Cancer. 11:738–747. 2020. View Article : Google Scholar : PubMed/NCBI | |
Qiao Y, Zhang C, Li A, Wang D, Luo Z, Ping Y, Zhou B, Liu S, Li H, Yue D, et al: IL6 derived from cancer-associated fibroblasts promotes chemoresistance via CXCR7 in esophageal squamous cell carcinoma. Oncogene. 37:873–883. 2018. View Article : Google Scholar : PubMed/NCBI | |
Che Y, Wang J, Li Y, Lu Z, Huang J, Sun S, Mao S, Lei Y, Zang R, Sun N and He L: Cisplatin-activated PAI-1 secretion in the cancer-associated fibroblasts with paracrine effects promoting esophageal squamous cell carcinoma progression and causing chemoresistance. Cell Death Dis. 9:7592018. View Article : Google Scholar : PubMed/NCBI | |
Zhuang J, Shen L, Li M, Sun J, Hao J, Li J, Zhu Z, Ge S, Zhang D, Guo H, et al: Cancer-associated fibroblast-derived miR-146a-5p generates a niche that promotes bladder cancer stemness and chemoresistance. Cancer Res. 83:1611–1627. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kang SH, Oh SY, Lee KY, Lee HJ, Kim MS, Kwon TG, Kim JW, Lee ST, Choi SY and Hong SH: Differential effect of cancer-associated fibroblast-derived extracellular vesicles on cisplatin resistance in oral squamous cell carcinoma via miR-876-3p. Theranostics. 14:460–479. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhao Q, Huang L, Qin G, Qiao Y, Ren F, Shen C, Wang S, Liu S, Lian J, Wang D, et al: Cancer-associated fibroblasts induce monocytic myeloid-derived suppressor cell generation via IL-6/exosomal miR-21-activated STAT3 signaling to promote cisplatin resistance in esophageal squamous cell carcinoma. Cancer Lett. 518:35–48. 2021. View Article : Google Scholar : PubMed/NCBI | |
Guo D, Jin J, Liu J, Dong X, Li D and He Y: MicroRNA-29b regulates the radiosensitivity of esophageal squamous cell carcinoma by regulating the BTG2-mediated cell cycle. Strahlenther Onkol. 197:829–835. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wu Q, Zhang H, Yang D, Min Q, Wang Y, Zhang W and Zhan Q: The m6A-induced lncRNA CASC8 promotes proliferation and chemoresistance via upregulation of hnRNPL in esophageal squamous cell carcinoma. Int J Biol Sci. 18:4824–4836. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jia Y, Tian C, Wang H, Yu F, Lv W, Duan Y, Cheng Z, Wang X, Wang Y, Liu T, et al: Long non-coding RNA NORAD/miR-224-3p/MTDH axis contributes to CDDP resistance of esophageal squamous cell carcinoma by promoting nuclear accumulation of β-catenin. Mol Cancer. 20:1622021. View Article : Google Scholar : PubMed/NCBI | |
Tong Y, Yang L, Yu C, Zhu W, Zhou X, Xiong Y, Wang W, Ji F, He D and Cao X: Tumor-secreted exosomal lncRNA POU3F3 promotes cisplatin resistance in ESCC by inducing fibroblast differentiation into CAFs. Mol Ther Oncolytics. 18:1–13. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang P, Yang Z, Ye T, Shao F, Li J, Sun N and He J: lncTUG1/miR-144-3p affect the radiosensitivity of esophageal squamous cell carcinoma by competitively regulating c-MET. J Exp Clin Cancer Res. 39:72020. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Lu X, Wen L, You C, Jin X and Liu J: Hsa_circ_0014879 regulates the radiosensitivity of esophageal squamous cell carcinoma through miR-519-3p/CDC25A axis. Anticancer Drugs. 33:e349–e361. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cheng J, Zhang R, Yan M and Li Y: Circular RNA hsa_circ_0000277 promotes tumor progression and DDP resistance in esophageal squamous cell carcinoma. BMC Cancer. 22:2382022. View Article : Google Scholar : PubMed/NCBI | |
Zhou S, Guo Z, Lv X and Zhang X: CircGOT1 promotes cell proliferation, mobility, and glycolysis-mediated cisplatin resistance via inhibiting its host gene GOT1 in esophageal squamous cell cancer. Cell Cycle. 21:247–260. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Gu S, Wu K, Li L, Dong C, Wang W and Zhou Y: CircRNA-DOPEY2 enhances the chemosensitivity of esophageal cancer cells by inhibiting CPEB4-mediated Mcl-1 translation. J Exp Clin Cancer Res. 40:3612021. View Article : Google Scholar : PubMed/NCBI | |
Zhu H, Du F and Cao C: Restoration of circPSMC3 sensitizes gefitinib-resistant esophageal squamous cell carcinoma cells to gefitinib by regulating miR-10a-5p/PTEN axis. Cell Biol Int. 45:107–116. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tang Q, Zhao S, Zhou N, He J, Zu L, Liu T, Song Z, Chen J, Peng L and Xu S: PD-1/PD-L1 immune checkpoint inhibitors in neoadjuvant therapy for solid tumors (review). Int J Oncol. 62:492023. View Article : Google Scholar : PubMed/NCBI | |
Yi M, Zheng X, Niu M, Zhu S, Ge H and Wu K: Combination strategies with PD-1/PD-L1 blockade: Current advances and future directions. Mol Cancer. 21:282022. View Article : Google Scholar : PubMed/NCBI | |
Jiang W, Pan S, Chen X, Wang ZW and Zhu X: The role of lncRNAs and circRNAs in the PD-1/PD-L1 pathway in cancer immunotherapy. Mol Cancer. 20:1162021. View Article : Google Scholar : PubMed/NCBI | |
Fang Z, Jiang C and Li S: The potential regulatory roles of circular RNAs in tumor immunology and immunotherapy. Front Immunol. 11:6175832021. View Article : Google Scholar : PubMed/NCBI | |
Gao C, Xu YJ, Qi L, Bao YF, Zhang L and Zheng L: CircRNA VIM silence synergizes with sevoflurane to inhibit immune escape and multiple oncogenic activities of esophageal cancer by simultaneously regulating miR-124/PD-L1 axis. Cell Biol Toxicol. 38:825–845. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jin W, Wang L, Cheng S and Lv H: Prognostic value of microRNA-378 in esophageal cancer and its regulatory effect on tumor progression. Exp Ther Med. 22:7042021. View Article : Google Scholar : PubMed/NCBI | |
Kim S, Kim GH, Park SJ, Kwon CH, I H, Lee MW and Lee BE: Exosomal MicroRNA analyses in esophageal squamous cell carcinoma cell lines. J Clin Med. 11:44262022. View Article : Google Scholar : PubMed/NCBI | |
Wen J, Wang G, Xie X, Lin G, Yang H, Luo K, Liu Q, Ling Y, Xie X, Lin P, et al: Prognostic value of a four-miRNA signature in patients with lymph node positive locoregional esophageal squamous cell carcinoma undergoing complete surgical resection. Ann Surg. 273:523–531. 2021. View Article : Google Scholar : PubMed/NCBI | |
Okuda Y, Shimura T, Iwasaki H, Fukusada S, Nishigaki R, Kitagawa M, Katano T, Okamoto Y, Yamada T, Horike SI and Kataoka H: Urinary microRNA biomarkers for detecting the presence of esophageal cancer. Sci Rep. 11:85082021. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Ling X, Fang C and Ma J: Identification and validation of an eight-lncRNA signature that predicts prognosis in patients with esophageal squamous cell carcinoma. Cell Mol Biol Lett. 27:392022. View Article : Google Scholar : PubMed/NCBI | |
Cao S, Wang X, Liu X, Li J, Duan L, Gao Z, Lun S, Zhu Y, Yang H, Zhang H and Zhou F: Integrative analysis of angiogenesis-related long non-coding RNA and identification of a six-DEARlncRNA signature associated with prognosis and therapeutic response in esophageal squamous cell carcinoma. Cancers (Basel). 14:41952022. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Wang L, Liu H, Li C and He J: The prognostic significance of metabolic syndrome and a related Six-lncRNA signature in esophageal squamous cell carcinoma. Front Oncol. 10:612020. View Article : Google Scholar : PubMed/NCBI | |
Xie K, Zheng C, Gu W, Jiang Z, Luo C, Luo J, Diao Y, Wang G, Cong Z, Yao X, et al: A RASSF8-AS1 based exosomal lncRNAs panel used for diagnostic and prognostic biomarkers for esophageal squamous cell carcinoma. Thorac Cancer. 13:3341–3352. 2022. View Article : Google Scholar : PubMed/NCBI | |
Huang E, Fu J, Yu Q, Xie P, Yang Z, Ji H, Wang L, Luo G, Zhang Y and Li K: CircRNA hsa_circ_0004771 promotes esophageal squamous cell cancer progression via miR-339-5p/CDC25A axis. Epigenomics. 12:587–603. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Zhu D, Zhao Z, Sun M, Wang F, Li W, Zhang J and Jiang G: RNA sequencing reveals the expression profiles of circRNA and identifies a four-circRNA signature acts as a prognostic marker in esophageal squamous cell carcinoma. Cancer Cell Int. 21:1512021. View Article : Google Scholar : PubMed/NCBI | |
Hu X, Wu D, He X, Zhao H, He Z, Lin J, Wang K, Wang W, Pan Z, Lin H and Wang M: circGSK3β promotes metastasis in esophageal squamous cell carcinoma by augmenting β-catenin signaling. Mol Cancer. 18:1602019. View Article : Google Scholar : PubMed/NCBI | |
Bu J, Gu L, Liu X, Nan X, Zhang X, Meng L, Zheng Y, Liu F, Li J, Li Z, et al: The circRNA circADAMTS6 promotes progression of ESCC and correlates with prognosis. Sci Rep. 12:137572022. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Liu H, Liu Z, Yang L, Zhou J, Cao X and Sun H: Circ-SLC7A5, a potential prognostic circulating biomarker for detection of ESCC. Cancer Genet. 240:33–39. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhao Q, Zhu X, Ke JM, Su XY, Yi J, Wu DL, Lin J and Deng ZQ: Circular RNA BMI1 serves as a potential target for diagnosis and treatment in esophageal cancer. Technol Cancer Res Treat. 20:153303382110330752021. View Article : Google Scholar : PubMed/NCBI | |
Tang Y, Gao Z and Liu R: Identification and function of circular RNA hsa_circ_0071106: A novel biomarker for differentiation degree of esophageal squamous cell carcinoma. Pathol Res Pract. 233:1538752022. View Article : Google Scholar : PubMed/NCBI | |
Chen B, Dragomir MP, Yang C, Li Q, Horst D and Calin GA: Targeting non-coding RNAs to overcome cancer therapy resistance. Signal Transduct Target Ther. 7:1212022. View Article : Google Scholar : PubMed/NCBI | |
Veneziano D, Di Bella S, Nigita G, Laganà A, Ferro A and Croce CM: Noncoding RNA: Current deep sequencing data analysis approaches and challenges. Hum Mutat. 37:1283–1298. 2016. View Article : Google Scholar : PubMed/NCBI | |
Anastasiadou E, Faggioni A, Trivedi P and Slack F: The nefarious nexus of noncoding RNAs in cancer. Int J Mol Sci. 19:20722018. View Article : Google Scholar : PubMed/NCBI | |
Nemeth K, Bayraktar R, Ferracin M and Calin GA: Non-coding RNAs in disease: From mechanisms to therapeutics. Nat Rev Genet. 25:211–232. 2024. View Article : Google Scholar : PubMed/NCBI | |
Sugihara H, Ishimoto T, Miyake K, Izumi D, Baba Y, Yoshida N, Watanabe M and Baba H: Noncoding RNA expression aberration is associated with cancer progression and is a potential biomarker in esophageal squamous cell carcinoma. Int J Mol Sci. 16:27824–27834. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li R, Chai L, Lei L, Guo R and Wen X: MiR-671-5p sponging activity of circMMP1 promotes esophageal squamous cancer progression. Thorac Cancer. 14:2924–2933. 2023. View Article : Google Scholar : PubMed/NCBI | |
Nan Y, Luo Q, Wu X, Chang W, Zhao P, Liu S and Liu Z: HCP5 prevents ubiquitination-mediated UTP3 degradation to inhibit apoptosis by activating c-Myc transcriptional activity. Mol Ther. 31:552–568. 2023. View Article : Google Scholar : PubMed/NCBI | |
Qiao G, Zhang W and Dong K: Regulation of ferroptosis by noncoding RNAs: A novel promise treatment in esophageal squamous cell carcinoma. Mol Cell Biochem. 477:2193–2202. 2022. View Article : Google Scholar : PubMed/NCBI | |
Song W and Zou SB: Prognostic role of lncRNA HOTAIR in esophageal squamous cell carcinoma. Clin Chim Acta. 463:169–173. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sang L, Yang L, Ge Q, Xie S, Zhou T and Lin A: Subcellular distribution, localization, and function of noncoding RNAs. Wiley Interdiscip Rev RNA. 13:e17292022. View Article : Google Scholar : PubMed/NCBI | |
Shi X, Liu X, Pan S, Ke Y, Li Y, Guo W, Wang Y, Ruan Q, Zhang X and Ma H: A novel autophagy-related long non-coding RNA signature to predict prognosis and therapeutic response in esophageal squamous cell carcinoma. Int J Gen Med. 14:8325–8339. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhu T, Ma Z, Wang H, Wei D, Wang B, Zhang C, Fu L, Li Z and Yu G: Immune-related long non-coding RNA signature and clinical nomogram to evaluate survival of patients suffering esophageal squamous cell carcinoma. Front Cell Dev Biol. 9:6419602021. View Article : Google Scholar : PubMed/NCBI | |
Liao G, Tang J and Bai J: Early development of esophageal squamous cell cancer: Stem cells, cellular origins and early clone evolution. Cancer Lett. 555:2160472023. View Article : Google Scholar : PubMed/NCBI | |
Hu XY, Wang R, Jin J, Liu XJ, Cui AL, Sun LQ, Li YP, Li Y, Wang YC, Zhen YS, et al: An EGFR-targeting antibody-drug conjugate LR004-VC-MMAE: potential in esophageal squamous cell carcinoma and other malignancies. Mol Oncol. 13:246–263. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mimura K, Kono K, Maruyama T, Watanabe M, Izawa S, Shiba S, Mizukami Y, Kawaguchi Y, Inoue M, Kono T, et al: Lapatinib inhibits receptor phosphorylation and cell growth and enhances antibody-dependent cellular cytotoxicity of EGFR- and HER2-overexpressing esophageal cancer cell lines. Int J Cancer. 129:2408–2416. 2011. View Article : Google Scholar : PubMed/NCBI | |
Meng L, Wu H, Wu J, Ding Pa, He J, Sang M and Liu L: Mechanisms of immune checkpoint inhibitors: Insights into the regulation of circular RNAS involved in cancer hallmarks. Cell Death Dis. 15:32024. View Article : Google Scholar : PubMed/NCBI | |
Ding L, Lu S and Li Y: Regulation of PD-1/PD-L1 pathway in cancer by noncoding RNAs. Pathol Oncol Res. 26:651–663. 2020. View Article : Google Scholar : PubMed/NCBI | |
Peng Y, Xu Y, Zhang X, Deng S, Yuan Y, Luo X, Hossain MT, Zhu X, Du K, Hu F, et al: A novel protein AXIN1-295aa encoded by circAXIN1 activates the Wnt/β-catenin signaling pathway to promote gastric cancer progression. Mol Cancer. 20:1582021. View Article : Google Scholar : PubMed/NCBI | |
Zheng X, Chen L, Zhou Y, Wang Q, Zheng Z, Xu B, Wu C, Zhou Q, Hu W, Wu C and Jiang J: A novel protein encoded by a circular RNA circPPP1R12A promotes tumor pathogenesis and metastasis of colon cancer via Hippo-YAP signaling. Mol Cancer. 18:472019. View Article : Google Scholar : PubMed/NCBI | |
Imazeki H and Kato K: Development of chemotherapeutics for unresectable advanced esophageal cancer. Expert Rev Anticancer Ther. 20:1083–1092. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fukuda T, Baba H, Okumura T, Kanda M, Akashi T, Tanaka H, Miwa T, Watanabe T, Hirano K, Sekine S, et al: miR-877-3p as a potential tumour suppressor of oesophageal squamous cell carcinoma. Anticancer Res. 43:35–43. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yu J, Chen S, Niu Y, Liu M, Zhang J, Yang Z, Gao P, Wang W, Han X and Sun G: Functional significance and therapeutic potential of miRNA-20b-5p in esophageal squamous cell carcinoma. Mol Ther Nucleic Acids. 21:315–331. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xing Y, Zha WJ, Li XM, Li H, Gao F, Ye T, Du WQ and Liu YC: Circular RNA circ-Foxo3 inhibits esophageal squamous cell cancer progression via the miR-23a/PTEN axis. J Cell Biochem. 121:2595–2605. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jin Y, Meng Q, Zhang B, Xie C, Chen X, Tian B, Wang J, Shih TC, Zhang Y, Cao J, et al: Cancer-associated fibroblasts-derived exosomal miR-3656 promotes the development and progression of esophageal squamous cell carcinoma via the ACAP2/PI3K-AKT signaling pathway. Int J Biol Sci. 17:3689–3701. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shou Y, Wang X, Liang Y, Liu X and Chen K: Exosomes-derived miR-154-5p attenuates esophageal squamous cell carcinoma progression and angiogenesis by targeting kinesin family member 14. Bioengineered. 13:4610–4620. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Zhang Q, Zhao P, Qiao T, Cao Z, Gao F, Liu M and Wu S: DNA methyltransferase 3 beta regulates promoter methylation of microRNA-149 to augment esophageal squamous cell carcinoma development through the ring finger protein 2/Wnt/β-catenin axis. Bioengineered. 13:4010–4027. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yan J, Shi L, Lin S and Li Y: MicroRNA-624-mediated ARRDC3/YAP/HIF1alpha axis enhances esophageal squamous cell carcinoma cell resistance to cisplatin and paclitaxel. Bioengineered. 12:5334–5347. 2021. View Article : Google Scholar : PubMed/NCBI | |
Suyal G, Pandey P, Saraya A and Sharma R: Tumour suppressor role of microRNA-335-5p in esophageal squamous cell carcinoma by targeting TTK (Mps1). Exp Mol Pathol. 124:1047382022. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Yu S, Yin X, Tu M, Cai L, Zhang Y, Yu L, Zhang S, Pan X and Huang Y: MiR-942-5p inhibits tumor migration and invasion through targeting CST1 in esophageal squamous cell carcinoma. PLoS One. 18:e02770062023. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Li J, Cheng D, Zhang K, Liu W, Xue Q, Du R, Zhou L, Yeung YT, Bai R, et al: miR-132-3p promotes heat stimulation-induced esophageal squamous cell carcinoma tumorigenesis by targeting KCNK2. Mol Carcinog. 62:583–597. 2023. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Wang J, Liu L, Chen L, Hu S and Liu F: MicroRNA-196b is related to the overall survival of patients with esophageal squamous cell carcinoma and facilitates tumor progression by regulating SOCS2 (Suppressor Of Cytokine Signaling 2). Bioengineered. 12:7737–7746. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xue J, Xiao P, Yu X and Zhang X: A positive feedback loop between AlkB homolog 5 and miR-193a-3p promotes growth and metastasis in esophageal squamous cell carcinoma. Hum Cell. 34:502–514. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li P, Liu X, Xing W, Qiu H, Li R, Liu S and Sun H: Exosome-derived miR-200a promotes esophageal cancer cell proliferation and migration via the mediating Keap1 expression. Mol Cell Biochem. 477:1295–1308. 2022. View Article : Google Scholar : PubMed/NCBI | |
Luo XJ, He MM, Liu J, Zheng JB, Wu QN, Chen YX, Meng Q, Luo KJ, Chen DL, Xu RH, et al: LncRNA TMPO-AS1 promotes esophageal squamous cell carcinoma progression by forming biomolecular condensates with FUS and p300 to regulate TMPO transcription. Exp Mol Med. 54:834–847. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Zhang Q, Liu H, Wang N, Zhang X and Yang S: lncRNA PART1, manipulated by transcriptional factor FOXP2, suppresses proliferation and invasion in ESCC by regulating the miR-18a-5p/SOX6 signaling axis. Oncol Rep. 45:1118–1132. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tang J, Xu H, Liu Q, Zheng J, Pan C, Li Z, Wen W, Wang J, Zhu Q, Wang Z and Chen L: LncRNA LOC146880 promotes esophageal squamous cell carcinoma progression via miR-328-5p/FSCN1/MAPK axis. Aging (Albany NY). 13:14198–14218. 2021. View Article : Google Scholar : PubMed/NCBI | |
Niu Y, Guo Y, Li Y, Shen S, Liang J, Guo W and Dong Z: LncRNA GATA2-AS1 suppresses esophageal squamous cell carcinoma progression via the mir-940/PTPN12 axis. Exp Cell Res. 416:1131302022. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Lu J, Xu T, Yan Z, Guo Y, Dong Z and Guo W: KTN1-AS1, a SOX2-mediated lncRNA, activates epithelial-mesenchymal transition process in esophageal squamous cell carcinoma. Sci Rep. 12:201862022. View Article : Google Scholar : PubMed/NCBI | |
Dong Z, Yang L, Lu J, Guo Y, Shen S, Liang J and Guo W: Downregulation of LINC00886 facilitates epithelial-mesenchymal transition through SIRT7/ELF3/miR-144 pathway in esophageal squamous cell carcinoma. Clin Exp Metastasis. 39:661–677. 2022. View Article : Google Scholar : PubMed/NCBI | |
Pan C, Chen G, Zhao X, Xu X and Liu J: lncRNA BBOX1-AS1 silencing inhibits esophageal squamous cell cancer progression by promoting ferroptosis via miR-513a-3p/SLC7A11 axis. Eur J Pharmacol. 934:1753172022. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Pan E, Zhang Y, Zhao C, Liu Q, Pu Y and Yin L: LncRNA RPL34-AS1 suppresses the proliferation, migration and invasion of esophageal squamous cell carcinoma via targeting miR-575/ACAA2 axis. BMC Cancer. 22:10172022. View Article : Google Scholar : PubMed/NCBI | |
Lu JT, Yan ZY, Xu TX, Zhao F, Liu L, Li F and Guo W: Reciprocal regulation of LINC00941 and SOX2 promotes progression of esophageal squamous cell carcinoma. Cell Death Dis. 14:722023. View Article : Google Scholar : PubMed/NCBI | |
Fu X, Chen X, Si Y, Yao Y, Jiang Z and Chen K: Long non-coding RNA NCK1-AS1 is overexpressed in esophageal squamous cell carcinoma and predicts survival. Bioengineered. 13:8302–8310. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Zhou M, Zhu P, Ju C, Sheng J, Du D, Wan J, Yin H, Xing Y, Li H, et al: IGF2BP2-induced circRUNX1 facilitates the growth and metastasis of esophageal squamous cell carcinoma through miR-449b-5p/FOXP3 axis. J Exp Clin Cancer Res. 41:3472022. View Article : Google Scholar : PubMed/NCBI | |
Song H, Tian D, Sun J, Mao X, Kong W, Xu D, Ji Y, Qiu B, Zhan M and Wang J: circFAM120B functions as a tumor suppressor in esophageal squamous cell carcinoma via the miR-661/PPM1L axis and the PKR/p38 MAPK/EMT pathway. Cell Death Dis. 13:3612022. View Article : Google Scholar : PubMed/NCBI | |
Guan X, Guan X, Wang Y, Lan T, Cheng T, Cui Y and Xu H: Circ_0003340 downregulation mitigates esophageal squamous cell carcinoma progression by targeting miR-940/PRKAA1 axis. Thorac Cancer. 13:1164–1175. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liang W, Wang C, Wang J and Zhang M: Hsa_circ_0023984 regulates cell proliferation, migration, and invasion in esophageal squamous cancer via regulating miR-1294/PI3K/Akt/c-Myc pathway. Appl Biochem Biotechnol. 194:1–16. 2022. View Article : Google Scholar : PubMed/NCBI | |
Qian CJ, Tong YY, Wang YC, Teng XS and Yao J: Circ_0001093 promotes glutamine metabolism and cancer progression of esophageal squamous cell carcinoma by targeting miR-579-3p/glutaminase axis. J Bioenerg Biomembr. 54:119–134. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tang R, Zhou Q, Xu Q, Lu L and Zhou Y: Circular RNA circ_0006948 promotes esophageal squamous cell carcinoma progression by regulating microRNA-3612/LASP1 axis. Dig Dis Sci. 67:2158–2172. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Li X, Duan C and Jia Y: CircFNDC3B knockdown restrains the progression of oesophageal squamous cell carcinoma through miR-214-3p/CDC25A axis. Clin Exp Pharmacol Physiol. 49:1209–1220. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sun Z, Zhang S, Zhang N, Wang J, Wang J and Liu J: Circ_0005231 promotes the progression of esophageal squamous cell carcinoma via sponging miR-383-5p and regulating KIAA0101. Thorac Cancer. 13:1751–1762. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang YM, Zhao QW, Sun ZY, Lin HP, Xu X, Cao M, Fu YJ, Zhao XJ, Ma XM and Ye Q: Circular RNA hsa_circ_0003823 promotes the tumor progression, metastasis and apatinib resistance of esophageal squamous cell carcinoma by miR-607/CRISP3 axis. Int J Biol Sci. 18:5787–5808. 2022. View Article : Google Scholar : PubMed/NCBI | |
Meng F, Zhang X, Wang Y, Lin J, Tang Y, Zhang G, Qiu B, Zeng X, Liu W and He X: Hsa_circ_0021727 (circ-CD44) promotes ESCC progression by targeting miR-23b-5p to activate the TAB1/NFκB pathway. Cell Death Dis. 14:92023. View Article : Google Scholar : PubMed/NCBI |