1
|
Lim H, Devesa SS, Sosa JA, Check D and
Kitahara CM: Trends in thyroid cancer incidence and mortality in
the united states, 1974–2013. JAMA. 317:1338–1348. 2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Pu WL, Shi X, Yu PC, Zhang MY, Liu ZY, Tan
L, Han P, Wang Y, Ji D, Gan H, et al: Single-cell transcriptomic
analysis of the tumor ecosystems underlying initiation and
progression of papillary thyroid carcinoma. Nat Commun.
12:60582021. View Article : Google Scholar : PubMed/NCBI
|
3
|
Ilic N, Tao YL, Boutros-Suleiman S, Kadali
VN, Emanuelli A, Levy-Cohen G and Blank M: SMURF2-mediated
ubiquitin signaling plays an essential role in the regulation of
PARP1 PARylating activity, molecular interactions, and functions in
mammalian cells. FASEB J. 35:e214362021. View Article : Google Scholar : PubMed/NCBI
|
4
|
Blank M, Tang Y, Yamashita M, Burkett SS,
Cheng SY and Zhang YE: A tumor suppressor function of Smurf2
associated with controlling chromatin landscape and genome
stability through RNF20. Nat Med. 18:227–234. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Li YK, Yang DQ, Tian N, Zhang P, Zhu YM,
Meng J, Feng M, Lu Y, Liu Q, Tong L, et al: The ubiquitination
ligase SMURF2 reduces aerobic glycolysis and colorectal cancer cell
proliferation by promoting ChREBP ubiquitination and degradation. J
Biol Chem. 294:14745–14756. 2019. View Article : Google Scholar : PubMed/NCBI
|
6
|
Song DQ, Li SY, Ning LX, Zhang SC and Cai
Y: Smurf2 suppresses the metastasis of hepatocellular carcinoma via
ubiquitin degradation of Smad2. Open Med (Wars). 17:384–396. 2022.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Yu L, Dong L, Wang Y, Liu L, Long H, Li H,
Li J, Yang X, Liu Z, Duan G, et al: Reversible regulation of SATB1
ubiquitination by USP47 and SMURF2 mediates colon cancer cell
proliferation and tumor progression. Cancer Lett. 448:40–51. 2019.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Li Z and Zhang H: Reprogramming of
glucose, fatty acid and amino acid metabolism for cancer
progression. Biochim Biophys Acta Rev Cancer. 73:377–392. 2016.
|
9
|
Sun LC, Suo CX, Li ST, Zhang HF and Gao P:
Metabolic reprogramming for cancer cells and their
microenvironment: Beyond the Warburg Effect. Biochim Biophys Acta
Rev Cancer. 1870:51–66. 2018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Liu Y, Zhou Q, Song SL and Tang S:
Integrating metabolic reprogramming and metabolic imaging to
predict breast cancer therapeutic responses. Trends Endocrinol
Metab. 32:762–775. 2021. View Article : Google Scholar : PubMed/NCBI
|
11
|
Coelho RG, Fortunato RS and Carvalho DP:
Metabolic reprogramming in thyroid carcinoma. Front Oncol.
8:822018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Cameselle-Teijeiro JM: Changes and
perspectives in the New 2022 WHO classification of thyroid
neoplasms. Rev Esp Patol. 55:145–148. 2022.(In Spanish). PubMed/NCBI
|
13
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Sun T, Liu Z and Yang Q: The role of
ubiquitination and deubiquitination in cancer metabolism. Mol
Cancer. 19:1462020. View Article : Google Scholar : PubMed/NCBI
|
15
|
Bedford L, Lowe J, Dick LR, Mayer RJ and
Brownell JE: Ubiquitin-like protein conjugation and the
ubiquitin-proteasome system as drug targets. Nat Rev Drug Discov.
10:29–46. 2011. View
Article : Google Scholar : PubMed/NCBI
|
16
|
Sun TS, Liu ZN and Yang Q: The role of
ubiquitination and deubiquitination in cancer metabolism. Mol
Cancer. 19:1462020. View Article : Google Scholar : PubMed/NCBI
|
17
|
Fan Q, Wang Q, Cai RJ, Yuan HH and Xu M:
The ubiquitin system: Orchestrating cellular signals in
non-small-cell lung cancer. Cell Mol Biol Lett. 25:12020.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Gao QF, Wang SC and Zhang ZY: E3 ubiquitin
ligase SMURF2 prevents colorectal cancer by reducing the stability
of the YY1 protein and inhibiting the SENP1/c-myc axis. Gene Ther.
30:51–63. 2023. View Article : Google Scholar : PubMed/NCBI
|
19
|
Tan YW, Chen YJ, Du MG, Peng ZQ and Xie P:
USF2 inhibits the transcriptional activity of Smurf1 and Smurf2 to
promote breast cancer tumorigenesis. Cell Signal. 53:49–58. 2019.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Chaudhary KR, Kinslow CJ, Cheng HY, Silva
JM, Yu JY, Wang TJ, Hei TK, Halmos B and Cheng SK: Smurf2
inhibition enhances chemotherapy and radiation sensitivity in
non-small-cell lung cancer. Sci Rep. 12:101402022. View Article : Google Scholar : PubMed/NCBI
|