1
|
Sekiya K, Okuda H and Arichi S: Selective
inhibition of platelet lipoxygenase by esculetin. Biochim Biophys
Acta. 713:68–72. 1982. View Article : Google Scholar : PubMed/NCBI
|
2
|
Zhang H, Li Q, Shi Z, Hu Z and Wang R:
Analysis of aesculin and aesculotin in Cortex fraxini by capillary
zone electrophoresis. Talanta. 52:607–621. 2000. View Article : Google Scholar : PubMed/NCBI
|
3
|
Bora KS and Sharma A: The genus artemisia:
A comprehensive review. Pharm Biol. 49:101–109. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Chang SH: Flavonoids, coumarins and
acridone alkaloids from the root bark of Citrus limonia.
Phytochemistry. 29:351–353. 1990. View Article : Google Scholar
|
5
|
Oshima N, Narukawa Y, Takeda T and Kiuchi
F: Collagenase inhibitors from Viola yedoensis. J Nat Med.
67:240–245. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Street RA, Sidana J and Prinsloo G:
Cichorium intybus: Traditional uses, phytochemistry, pharmacology,
and toxicology. Evid Based Complement Alternat Med.
2013:5793192013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Hanahan D: Hallmarks of cancer: New
dimensions. Cancer Discov. 12:31–46. 2022. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kadakol A, Sharma N, Kulkarni YA and
Gaikwad AB: Esculetin: A phytochemical endeavor fortifying effect
against non-communicable diseases. Biomed Pharmacother.
84:1442–1448. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Rzodkiewicz P, Gasinska E, Maslinski S and
Bujalska-Zadrozny M: Antinociceptive properties of esculetin in
non-inflammatory and inflammatory models of pain in rats. Clin Exp
Pharmacol Physiol. 42:213–219. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Fylaktakidou KC, Hadjipavlou-Litina DJ,
Litinas KE and Nicolaides DN: Natural and synthetic coumarin
derivatives with anti-inflammatory/antioxidant activities. Curr
Pharm Des. 10:3813–3833. 2004. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhang G, Xu Y and Zhou HF: Esculetin
inhibits proliferation, invasion, and migration of laryngeal cancer
in vitro and in vivo by inhibiting janus kinas (JAK)-signal
transducer and activator of transcription-3 (STAT3) activation. Med
Sci Monit. 25:7853–7863. 2019. View Article : Google Scholar : PubMed/NCBI
|
13
|
Park SS, Park SK, Lim JH, Choi YH, Kim WJ
and Moon SK: Esculetin inhibits cell proliferation through the
Ras/ERK1/2 pathway in human colon cancer cells. Oncol Rep.
25:223–230. 2011.PubMed/NCBI
|
14
|
Wen M, Sun J, Yang M, Zhang X, Wang Y,
Zhou W, Shi Y, Huang Y, Li N and Chen L: Design, synthesis, and
biological evaluation of Esculetin-Furoxan-DEAC ternary hybrids for
anti-triple negative breast cancer. J Med Chem. 66:12446–12458.
2023. View Article : Google Scholar : PubMed/NCBI
|
15
|
Kim WK, Byun WS, Chung HJ, Oh J, Park HJ,
Choi JS and Lee SK: Esculetin suppresses tumor growth and
metastasis by targeting Axin2/E-cadherin axis in colorectal cancer.
Biochem Pharmacol. 152:71–83. 2018. View Article : Google Scholar : PubMed/NCBI
|
16
|
Choi YJ, Lee CM, Park SH and Nam MJ:
Esculetin induces cell cycle arrest and apoptosis in human colon
cancer LoVo cells. Environ Toxicol. 34:1129–1136. 2019. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kim AD, Han X, Piao MJ, Hewage SRKM, Hyun
CL, Cho SJ and Hyun JW: Esculetin induces death of human colon
cancer cells via the reactive oxygen species-mediated mitochondrial
apoptosis pathway. Environ Toxicol Pharmacol. 39:982–989. 2015.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Lee SY, Lim TG, Chen H, Jung SK, Lee HJ,
Lee MH, Kim DJ, Shin A, Lee KW, Bode AM, et al: Esculetin
suppresses proliferation of human colon cancer cells by directly
targeting β-catenin. Cancer Prev Res (Phila). 6:1356–1364. 2013.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Li T, Zhang L and Huo X: Inhibitory
effects of aesculetin on the proliferation of colon cancer cells by
the Wnt/β-catenin signaling pathway. Oncol Lett. 15:7118–7122.
2018.PubMed/NCBI
|
20
|
Kim AD, Hewage SRK, Piao MJ, Kang KA, Cho
SJ and Hyun JW: Esculetin induces apoptosis in human colon cancer
cells by inducing endoplasmic reticulum stress. Cell Biochem Funct.
33:487–494. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhang J, Feng M and Guan W: Naturally
occurring aesculetin coumarin exerts antiproliferative effects in
gastric cancer cells mediated via apoptotic cell death, cell cycle
arrest and targeting PI3K/AKT/M-TOR signalling pathway. Acta
Biochim Pol. 68:109–113. 2021.PubMed/NCBI
|
22
|
Wang G, Lu M, Yao Y, Wang J and Li J:
Esculetin exerts antitumor effect on human gastric cancer cells
through IGF-1/PI3K/Akt signaling pathway. Eur J Pharmacol.
814:207–215. 2017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Saito Y, Okamoto H, Mizusaki S and Yoshida
D: Inhibition of 12-O-tetradecanoylphorbol-13-acetate-induced
induction of Epstein-Barr virus early antigen in Raji cells by some
inhibitors of tumor promotion. Cancer Lett. 32:137–144. 1986.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Wei S, Qiu T, Yao X, Wang N, Jiang L, Jia
X, Tao Y, Wang Z, Pei P, Zhang J, et al: Arsenic induces pancreatic
dysfunction and ferroptosis via mitochondrial
ROS-autophagy-lysosomal pathway. J Hazard Mater. 384:1213902020.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Park E and Chung SW: ROS-mediated
autophagy increases intracellular iron levels and ferroptosis by
ferritin and transferrin receptor regulation. Cell Death Dis.
10:1–10. 2019. View Article : Google Scholar : PubMed/NCBI
|
26
|
Qian X, Zhang J, Gu Z and Chen Y:
Nanocatalysts-augmented Fenton chemical reaction for nanocatalytic
tumor therapy. Biomaterials. 211:1–13. 2019. View Article : Google Scholar : PubMed/NCBI
|
27
|
Xiu Z, Li Y, Fang J, Han J, Li S, Li Y,
Yang X, Song G, Li Y, Jin N, et al: Inhibitory effects of esculetin
on liver cancer through triggering NCOA4 pathway-mediation
Ferritinophagy in vivo and in vitro. J Hepatocell Carcinoma.
10:611–629. 2023. View Article : Google Scholar : PubMed/NCBI
|
28
|
Arora R, Sawney S, Saini V, Steffi C,
Tiwari M and Saluja D: Esculetin induces antiproliferative and
apoptotic response in pancreatic cancer cells by directly binding
to KEAP1. Mol Cancer. 15:642016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Huang SX, Mou JF, Luo Q, Mo QH, Zhou XL,
Huang X, Xu Q, Tan XD, Chen X and Liang CQ: Anti-Hepatitis B virus
activity of esculetin from Microsorium fortunei in vitro and in
vivo. Molecules. 24:34752019. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wilkinson L and Gathani T: Understanding
breast cancer as a global health concern. Br J Radiol.
95:202110332022. View Article : Google Scholar : PubMed/NCBI
|
31
|
Chang HT, Chou CT, Lin YS, Shieh P, Kuo
DH, Jan CR and Liang WZ: Esculetin, a natural coumarin compound,
evokes Ca(2+) movement and activation of Ca(2+)-associated
mitochondrial apoptotic pathways that involved cell cycle arrest in
ZR-75-1 human breast cancer cells. Tumour Biol. 37:4665–4678. 2016.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Gaona-Luviano P, Medina-Gaona LA and
Magaña-Pérez K: Epidemiology of ovarian cancer. Chin Clin Oncol.
9:472020. View Article : Google Scholar : PubMed/NCBI
|
33
|
Momenimovahed Z, Tiznobaik A, Taheri S and
Salehiniya H: Ovarian cancer in the world: Epidemiology and risk
factors. Int J Womens Health. 11:287–299. 2019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Crosbie EJ, Kitson SJ, McAlpine JN,
Mukhopadhyay A, Powell ME and Singh N: Endometrial cancer. Lancet.
399:1412–1428. 2022. View Article : Google Scholar : PubMed/NCBI
|
35
|
Yin W, Fu X, Chang W, Han L, Meng J, Cao
A, Ren X, Fan Z and Zhou S: Antiovarian cancer mechanism of
esculetin: Inducing G0/G1 arrest and apoptosis via JAK2/STAT3
signalling pathway. J Pharm Pharmacol. 75:87–97. 2023. View Article : Google Scholar : PubMed/NCBI
|
36
|
Jiang R, Su G, Chen X, Chen S, Li Q, Xie B
and Zhao Y: Esculetin inhibits endometrial cancer proliferation and
promotes apoptosis via hnRNPA1 to downregulate BCLXL and XIAP.
Cancer Lett. 521:308–321. 2021. View Article : Google Scholar : PubMed/NCBI
|
37
|
Yang J, Xiao YL, He XR, Qiu GF and Hu XM:
Aesculetin-induced apoptosis through a ROS-mediated mitochondrial
dysfunction pathway in human cervical cancer cells. J Asian Nat
Prod Res. 12:185–193. 2010. View Article : Google Scholar : PubMed/NCBI
|
38
|
Zhu X, Gu J and Qian H: Esculetin
attenuates the growth of lung cancer by downregulating Wnt targeted
genes and suppressing NF-κB. Arch Bronconeumol (Engl Ed).
54:128–133. 2018.(In English, Spanish). View Article : Google Scholar : PubMed/NCBI
|
39
|
Li H, Wang Q, Wang Y, Xu Z and Han Z:
Esculetin inhibits the proliferation of human lung cancer cells by
targeting epithelial-to-mesenchymal transition of the cells. Cell
Mol Biol (Noisy-le-grand). 65:95–98. 2019. View Article : Google Scholar : PubMed/NCBI
|
40
|
Igissin N, Zatonskikh V, Telmanova Z,
Tulebaev R and Moore M: Laryngeal cancer: Epidemiology, etiology,
and prevention: A narrative review. Iran J Public Health.
52:2248–2259. 2023.PubMed/NCBI
|
41
|
Cho JH, Shin JC, Cho JJ, Choi YH, Shim JH
and Chae JI: Esculetin (6,7-dihydroxycoumarin): A potential cancer
chemopreventive agent through suppression of Sp1 in oral squamous
cancer cells. Int J Oncol. 46:265–271. 2015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Kok SH, Yeh CC, Chen ML and Kuo MYP:
Esculetin enhances TRAIL-induced apoptosis through DR5 upregulation
in human oral cancer SAS cells. Oral Oncol. 45:1067–1072. 2009.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Turkekul K, Colpan RD, Baykul T, Ozdemir
MD and Erdogan S: Esculetin inhibits the survival of human prostate
cancer cells by inducing apoptosis and arresting the cell cycle. J
Cancer Prev. 23:10–17. 2018. View Article : Google Scholar : PubMed/NCBI
|
44
|
Han L, Li P, Fu X, Huang Z and Yin W:
Aesculetin inhibits proliferation and induces mitochondrial
apoptosis in bladder cancer cells by suppressing the MEK/ERK
signaling pathway. Anticancer Agents Med Chem. 23:478–487. 2023.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Pelcovits A and Niroula R: Acute myeloid
leukemia: A review. R I Med J (2013). 103:38–40. 2020.PubMed/NCBI
|
46
|
Lucas DM, Still PC, Pérez LB, Grever MR
and Kinghorn AD: Potential of plant-derived natural products in the
treatment of leukemia and lymphoma. Curr Drug Targets. 11:812–822.
2010. View Article : Google Scholar : PubMed/NCBI
|
47
|
Gong J, Zhang WG, Feng XF, Shao MJ and
Xing C: Aesculetin (6,7-dihydroxycoumarin) exhibits potent and
selective antitumor activity in human acute myeloid leukemia cells
(THP-1) via induction of mitochondrial mediated apoptosis and
cancer cell migration inhibition. J BUON. 22:1563–1569.
2017.PubMed/NCBI
|
48
|
Pan H, Wang BH, Lv W, Jiang Y and He L:
Esculetin induces apoptosis in human gastric cancer cells through a
cyclophilin D-mediated mitochondrial permeability transition pore
associated with ROS. Chem Biol Interact. 242:51–60. 2015.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Huang G, Mao J, Ji Z and Ailati A:
Stachyose-induced apoptosis of Caco-2 cells via the
caspase-dependent mitochondrial pathway. Food Funct. 6:765–771.
2015. View Article : Google Scholar : PubMed/NCBI
|
50
|
Anelli T and Sitia R: Protein quality
control in the early secretory pathway. EMBO J. 27:315–327. 2008.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Ye J, Rawson RB, Komuro R, Chen X, Davé
UP, Prywes R, Brown MS and Goldstein JL: ER stress induces cleavage
of membrane-bound ATF6 by the same proteases that process SREBPs.
Mol Cell. 6:1355–1364. 2000. View Article : Google Scholar : PubMed/NCBI
|
52
|
Lee AH, Iwakoshi NN and Glimcher LH: XBP-1
regulates a subset of endoplasmic reticulum resident chaperone
genes in the unfolded protein response. Mol Cell Biol.
23:7448–7459. 2003. View Article : Google Scholar : PubMed/NCBI
|
53
|
Harding HP, Zhang Y, Bertolotti A, Zeng H
and Ron D: Perk is essential for translational regulation and cell
survival during the unfolded protein response. Mol Cell. 5:897–904.
2000. View Article : Google Scholar : PubMed/NCBI
|
54
|
Yoneda T, Imaizumi K, Oono K, Yui D, Gomi
F, Katayama T and Tohyama M: Activation of caspase-12, an
endoplastic reticulum (ER) resident caspase, through tumor necrosis
factor receptor-associated factor 2-dependent mechanism in response
to the ER stress. J Biol Chem. 276:13935–13940. 2001. View Article : Google Scholar : PubMed/NCBI
|
55
|
Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R
and Tang D: Activation of the p62-Keap1-NRF2 pathway protects
against ferroptosis in hepatocellular carcinoma cells. Hepatology.
63:173–184. 2016. View Article : Google Scholar : PubMed/NCBI
|
56
|
Mancias JD, Vaites LP, Nissim S, Biancur
DE, Kim AJ, Wang X, Liu Y, Goessling W, Kimmelman AC, Harper JW, et
al: Ferritinophagy via NCOA4 is required for erythropoiesis and is
regulated by iron dependent HERC2-mediated proteolysis. Elife.
4:e103082015. View Article : Google Scholar : PubMed/NCBI
|
57
|
Gao M, Monian P, Pan Q, Zhang W, Xiang J
and Jiang X: Ferroptosis is an autophagic cell death process. Cell
Res. 26:1021–1032. 2016. View Article : Google Scholar : PubMed/NCBI
|
58
|
Ahmed-Choudhury J, Williams KT, Young LS,
Adams DH and Afford SC: CD40 mediated human cholangiocyte apoptosis
requires JAK2 dependent activation of STAT3 in addition to
activation of JNK1/2 and ERK1/2. Cell Signal. 18:456–468. 2006.
View Article : Google Scholar : PubMed/NCBI
|