1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Schadendorf D, van Akkooi ACJ, Berking C,
Griewank KG, Gutzmer R, Hauschild A, Stang A, Roesch A and Ugurel
S: Melanoma. Lancet. 392:971–984. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Teixido C, Castillo P, Martinez-Vila C,
Arance A and Alos L: Molecular markers and targets in melanoma.
Cells. 10:23202021. View Article : Google Scholar : PubMed/NCBI
|
4
|
Shreberk-Hassidim R, Ostrowski SM and
Fisher DE: The complex interplay between nevi and melanoma: Risk
factors and precursors. Int J Mol Sci. 24:35412023. View Article : Google Scholar : PubMed/NCBI
|
5
|
Serman N, Vranic S, Glibo M, Serman L and
Bukvic Mokos Z: Genetic risk factors in melanoma etiopathogenesis
and the role of genetic counseling: A concise review. Bosn J Basic
Med Sci. 22:673–682. 2022.PubMed/NCBI
|
6
|
Raimondi S, Suppa M and Gandini S:
Melanoma epidemio-logy and sun exposure. Acta Derm Venereol.
100:adv001362020. View Article : Google Scholar : PubMed/NCBI
|
7
|
Majem M, Manzano JL, Marquez-Rodas I,
Mujika K, Muñoz-Couselo E, Pérez-Ruiz E, de la Cruz-Merino L,
Espinosa E, Gonzalez-Cao M and Berrocal A: SEOM clinical guideline
for the management of cutaneous melanoma (2020). Clin Transl Oncol.
23:948–960. 2021. View Article : Google Scholar : PubMed/NCBI
|
8
|
Villani A, Potestio L, Fabbrocini G,
Troncone G, Malapelle U and Scalvenzi M: The treatment of advanced
melanoma: Therapeutic update. Int J Mol Sci. 23:63882022.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Curti BD and Faries MB: Recent advances in
the treatment of melanoma. N Engl J Med. 384:2229–2240. 2021.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Santamaria-Barria JA and Mammen JMV:
Surgical management of melanoma: Advances and updates. Curr Oncol
Rep. 24:1425–1432. 2022. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wollina U: Melanoma surgery-An update.
Dermatol Ther. 35:e159662022. View Article : Google Scholar : PubMed/NCBI
|
12
|
Jenkins RW and Fisher DE: Treatment of
advanced melanoma in 2020 and beyond. J Invest Dermatol. 141:23–31.
2021. View Article : Google Scholar : PubMed/NCBI
|
13
|
Huang AC and Zappasodi R: A decade of
checkpoint blockade immunotherapy in melanoma: Understanding the
molecular basis for immune sensitivity and resistance. Nat Immunol.
23:660–670. 2022. View Article : Google Scholar : PubMed/NCBI
|
14
|
Fujimura T, Muto Y and Asano Y:
Immunotherapy for melanoma: The significance of immune checkpoint
inhibitors for the treatment of advanced melanoma. Int J Mol Sci.
23:157202022. View Article : Google Scholar : PubMed/NCBI
|
15
|
Sabbatino F, Liguori L, Pepe S and Ferrone
S: Immune checkpoint inhibitors for the treatment of melanoma.
Expert Opin Biol Ther. 22:563–576. 2022. View Article : Google Scholar : PubMed/NCBI
|
16
|
Carlino MS, Larkin J and Long GV: Immune
checkpoint inhibitors in melanoma. Lancet. 398:1002–1014. 2021.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Eddy K and Chen S: Overcoming immune
evasion in melanoma. Int J Mol Sci. 21:89842020. View Article : Google Scholar : PubMed/NCBI
|
18
|
Brown LJ, da Silva IP, Moujaber T, Gao B,
Hui R, Gurney H, Carlino M and Nagrial A: Five-year survival and
clinical correlates among patients with advanced non-small cell
lung cancer, melanoma and renal cell carcinoma treated with immune
check-point inhibitors in Australian tertiary oncology centres.
Cancer Med. 12:6788–6801. 2023. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zaremba A, Eggermont AMM, Robert C, Dummer
R, Ugurel S, Livingstone E, Ascierto PA, Long GV, Schadendorf D and
Zimmer L: The concepts of rechallenge and retreatment with immune
checkpoint blockade in melanoma patients. Eur J Cancer.
155:268–280. 2021. View Article : Google Scholar : PubMed/NCBI
|
20
|
O'Neill TJ, Tofaute MJ and Krappmann D:
Function and targeting of MALT1 paracaspase in cancer. Cancer Treat
Rev. 117:1025682023. View Article : Google Scholar : PubMed/NCBI
|
21
|
Yang N, Ji F, Cheng L, Lu J, Sun X, Lin X
and Lan X: Knockout of immunotherapy prognostic marker genes
eliminates the effect of the anti-PD-1 treatment. NPJ Precis Oncol.
5:372021. View Article : Google Scholar : PubMed/NCBI
|
22
|
Rosenbaum M, Gewies A, Pechloff K, Heuser
C, Engleitner T, Gehring T, Hartjes L, Krebs S, Krappmann D,
Kriegsmann M, et al: Bcl10-controlled Malt1 paracaspase activity is
key for the immune suppressive function of regulatory T cells. Nat
Commun. 10:23522019. View Article : Google Scholar : PubMed/NCBI
|
23
|
Cheng L, Deng N, Yang N, Zhao X and Lin X:
Malt1 protease is critical in maintaining function of regulatory T
cells and may be a therapeutic target for antitumor immunity. J
Immunol. 202:3008–3019. 2019. View Article : Google Scholar : PubMed/NCBI
|
24
|
Azam F, Latif MF, Farooq A, Tirmazy SH,
AlShahrani S, Bashir S and Bukhari N: Performance status assessment
by using ECOG (eastern cooperative oncology group) score for cancer
patients by oncology healthcare professionals. Case Rep Oncol.
12:728–736. 2019. View Article : Google Scholar : PubMed/NCBI
|
25
|
Eisenhauer EA, Therasse P, Bogaerts J,
Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S,
Mooney M, et al: New response evaluation criteria in solid tumours:
Revised RECIST guideline (version 1.1). Eur J Cancer. 45:228–247.
2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Wang Q, Wang Y, Liu Q, Chu Y, Mi R, Jiang
F, Zhao J, Hu K, Luo R, Feng Y, et al: MALT1 regulates Th2 and Th17
differentiation via NF-κB and JNK pathways, as well as correlates
with disease activity and treatment outcome in rheumatoid
arthritis. Front Immunol. 13:9138302022. View Article : Google Scholar : PubMed/NCBI
|
28
|
Song C, Liu X, Lin W, Lai K, Pan S, Lu Z,
Li D, Li N and Geng Q: Systematic analysis of histone acetylation
regulators across human cancers. BMC Cancer. 23:7332023. View Article : Google Scholar : PubMed/NCBI
|
29
|
Qian R, Niu X, Wang Y, Guo Z, Deng X, Ding
Z, Zhou M and Deng H: Targeting MALT1 suppresses the malignant
progression of colorectal cancer via miR-375/miR-365a-3p/NF-κB
axis. Front Cell Dev Biol. 10:8450482022. View Article : Google Scholar : PubMed/NCBI
|
30
|
Kurden-Pekmezci A, Cakiroglu E, Eris S,
Mazi FA, Coskun-Deniz OS, Dalgic E, Oz O and Senturk S: MALT1
paracaspase is overexpressed in hepatocellular carcinoma and
promotes cancer cell survival and growth. Life Sci. 323:1216902023.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Tsui KH, Chang KS, Sung HC, Hsu SY, Lin
YH, Hou CP, Yang PS, Chen CL, Feng TH and Juang HH:
Mucosa-associated lymphoid tissue 1 is an oncogene inducing cell
proliferation, invasion, and tumor growth via the upregulation of
NF-κB activity in human prostate carcinoma cells. Biomedicines.
9:2502021. View Article : Google Scholar : PubMed/NCBI
|
32
|
Li C, Yu F and Xu W: Early low blood MALT1
expression levels forecast better efficacy of PD-1 inhibitor-based
treatment in patients with metastatic colorectal cancer. Oncol
Lett. 26:3292023. View Article : Google Scholar : PubMed/NCBI
|
33
|
Wang Y, Zhang G, Jin J, Degan S, Tameze Y
and Zhang JY: MALT1 promotes melanoma progression through JNK/c-Jun
signaling. Oncogenesis. 6:e3652017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Moreira RS, Bicker J, Musicco F,
Persichetti A and Pereira AMPT: Anti-PD-1 immunotherapy in advanced
metastatic melanoma: State of the art and future challenges. Life
Sci. 240:1170932020. View Article : Google Scholar : PubMed/NCBI
|
35
|
Luke JJ, Flaherty KT, Ribas A and Long GV:
Targeted agents and immunotherapies: Optimizing outcomes in
melanoma. Nat Rev Clin Oncol. 14:463–482. 2017. View Article : Google Scholar : PubMed/NCBI
|
36
|
Di Pilato M, Kim EY, Cadilha BL, Prüßmann
JN, Nasrallah MN, Seruggia D, Usmani SM, Misale S, Zappulli V,
Carrizosa E, et al: Targeting the CBM complex causes
Treg cells to prime tumours for immune checkpoint
therapy. Nature. 570:112–116. 2019. View Article : Google Scholar : PubMed/NCBI
|