Role of AMIGO2 in cancer progression: Novel insights (Review)
- Authors:
- Zhen Tian
- Dongsheng Zhou
- Rui Jiang
- Bin Zhou
-
Affiliations: Department of Oncology, Huishan Third People's Hospital of Wuxi, Wuxi, Jiangsu 214183, P.R. China - Published online on: July 12, 2024 https://doi.org/10.3892/ol.2024.14567
- Article Number: 434
-
Copyright: © Tian et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Ruan Y, Chen L, Xie D, Luo T, Xu Y, Ye T, Chen X, Feng X and Wu X: Mechanisms of cell adhesion molecules in endocrine-related cancers: A concise outlook. Front Endocrinol (Lausanne). 13:8654362022. View Article : Google Scholar : PubMed/NCBI | |
Makrilia N, Kollias A, Manolopoulos L and Syrigos K: Cell adhesion molecules: Role and clinical significance in cancer. Cancer Invest. 27:1023–1037. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kim HN, Ruan Y, Ogana H and Kim YM: Cadherins, selectins, and integrins in CAM-DR in leukemia. Front Oncol. 10:5927332020. View Article : Google Scholar : PubMed/NCBI | |
Windisch R, Pirschtat N, Kellner C, Chen-Wichmann L, Lausen J, Humpe A, Krause DS and Wichmann C: Oncogenic deregulation of cell adhesion molecules in leukemia. Cancers (Basel). 11:3112019. View Article : Google Scholar : PubMed/NCBI | |
Hassn Mesrati M, Syafruddin SE, Mohtar MA and Syahir A: CD44: A multifunctional mediator of cancer progression. Biomolecules. 11:18502021. View Article : Google Scholar : PubMed/NCBI | |
Kuja-Panula J, Kiiltomäki M, Yamashiro T, Rouhiainen A and Rauvala H: AMIGO, a transmembrane protein implicated in axon tract development, defines a novel protein family with leucine-rich repeats. J Cell Biol. 160:963–973. 2003. View Article : Google Scholar : PubMed/NCBI | |
Soto F, Shen N and Kerschensteiner D: AMIGO1 promotes axon growth and territory matching in the retina. J Neurosci. 42:2678–2689. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ahmed Z, Douglas MR, John G, Berry M and Logan A: AMIGO3 is an NgR1/p75 co-receptor signalling axon growth inhibition in the acute phase of adult central nervous system injury. PLoS One. 8:e618782013. View Article : Google Scholar : PubMed/NCBI | |
Ono T, Sekino-Suzuki N, Kikkawa Y, Yonekawa H and Kawashima S: Alivin 1, a novel neuronal activity-dependent gene, inhibits apoptosis and promotes survival of cerebellar granule neurons. J Neurosci. 23:5887–5896. 2003. View Article : Google Scholar : PubMed/NCBI | |
Soto F, Tien NW, Goel A, Zhao L, Ruzycki PA and Kerschensteiner D: AMIGO2 scales dendrite arbors in the retina. Cell Rep. 29:1568–1578.e4. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lund RJ, Löytömäki M, Naumanen T, Dixon C, Chen Z, Ahlfors H, Tuomela S, Tahvanainen J, Scheinin J, Henttinen T, et al: Genome-wide identification of novel genes involved in early Th1 and Th2 cell differentiation. J Immunol. 178:3648–3660. 2007. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Khan MM, Kuja-Panula J, Wang H, Chen Y, Guo D, Chen ZJ, Lahesmaa R, Rauvala H and Tian L: AMIGO2 modulates T cell functions and its deficiency in mice ameliorates experimental autoimmune encephalomyelitis. Brain Behav Immun. 62:110–123. 2017. View Article : Google Scholar : PubMed/NCBI | |
Benedetti G, Bonaventura P, Lavocat F and Miossec P: IL-17A and TNF-α increase the expression of the antiapoptotic adhesion molecule Amigo-2 in arthritis synoviocytes. Front Immunol. 7:2542016. View Article : Google Scholar : PubMed/NCBI | |
Park H, Lee S, Shrestha P, Kim J, Park JA, Ko Y, Ban YH, Park DY, Ha SJ, Koh GY, et al: AMIGO2, a novel membrane anchor of PDK1, controls cell survival and angiogenesis via Akt activation. J Cell Biol. 211:619–637. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yu X, Wu T, Liao B, Du Z and Zhu P: Anticancer potential of corilagin on T24 and TSGH 8301 bladder cancer cells via the activation of apoptosis by the suppression of NF-κB-induced P13K/Akt signaling pathway. Environ Toxicol. 37:1152–1159. 2022. View Article : Google Scholar : PubMed/NCBI | |
Saahene RO, Agbo E, Barnes P, Yahaya ES, Amoani B, Nuvor SV and Okyere P: A review: Mechanism of phyllanthus urinaria in Cancers-NF-κB, P13K/AKT, and MAPKs signaling activation. Evid Based Complement Alternat Med. 2021:45143422021. View Article : Google Scholar : PubMed/NCBI | |
Zheng H and Liu JF: Studies on the relationship between P13K/AKT signal pathway-mediated MMP-9 gene and lung cancer. Eur Rev Med Pharmacol Sci. 21:753–759. 2017.PubMed/NCBI | |
Chen ZF, Wang J, Yu Y and Wei W: MicroRNA-936 promotes proliferation and invasion of gastric cancer cells by down-regulating FGF2 expression and activating P13K/Akt signaling pathway. Eur Rev Med Pharmacol Sci. 24:6707–6715. 2020.PubMed/NCBI | |
Zhao YX, Zhao HP, Zhao MY, Yu Y, Qi X, Wang JH and Lv J: Latest insights into the global epidemiological features, screening, early diagnosis and prognosis prediction of esophageal squamous cell carcinoma. World J Gastroenterol. 30:2638–2656. 2024. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Huang L, Yang T, Xu J, Zhang C, Deng Z, Yang X, Liu N, Chen S, Lin S, et al: METTL3 Promotes esophageal squamous cell carcinoma metastasis through enhancing GLS2 expression. Front Oncol. 11:6674512021. View Article : Google Scholar : PubMed/NCBI | |
Li J, Li Z, Xu Y, Huang C and Shan B: METTL3 facilitates tumor progression by COL12A1/MAPK signaling pathway in esophageal squamous cell carcinoma. J Cancer. 13:1972–1984. 2022. View Article : Google Scholar : PubMed/NCBI | |
Qiu Y, Tian Z, Miao TY, Shen L, Chen J, Li PF, Zhu ZX, Zhu ZF, Wu WJ, Xu X and Shen WG: The METTL3-m6A-YTHDC1-AMIGO2 axis contributes to cell proliferation and migration in esophageal squamous cell carcinoma. Gene. 908:1482812024. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Liu B, Nie Z, Duan L, Xiong Q, Jin Z, Yang C and Chen Y: The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther. 6:742021. View Article : Google Scholar : PubMed/NCBI | |
Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ, Sun BF, Sun HY, Li A, Ping XL, Lai WY, et al: Nuclear m(6)A Reader YTHDC1 Regulates mRNA Splicing. Mol Cell. 61:507–519. 2016. View Article : Google Scholar : PubMed/NCBI | |
Roundtree IA, Luo GZ, Zhang Z, Wang X, Zhou T, Cui Y, Sha J, Huang X, Guerrero L, Xie P, et al: YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. Elife. 6:e313112017. View Article : Google Scholar : PubMed/NCBI | |
Nakamura S, Kanda M, Shimizu D, Tanaka C, Inokawa Y, Hattori N, Hayashi M, Yamada S, Nakayama G, Omae K, et al: AMIGO2 Expression as a potential prognostic biomarker for gastric cancer. Anticancer Res. 40:6713–6721. 2020. View Article : Google Scholar : PubMed/NCBI | |
Goto K, Morimoto M, Osaki M, Tanio A, Izutsu R, Fujiwara Y and Okada F: The impact of AMIGO2 on prognosis and hepatic metastasis in gastric cancer patients. BMC Cancer. 22:2802022. View Article : Google Scholar : PubMed/NCBI | |
Rabenau KE, O'Toole JM, Bassi R, Kotanides H, Witte L, Ludwig DL and Pereira DS: DEGA/AMIGO-2, a leucine-rich repeat family member, differentially expressed in human gastric adenocarcinoma: Effects on ploidy, chromosomal stability, cell adhesion/migration and tumorigenicity. Oncogene. 23:5056–5067. 2004. View Article : Google Scholar : PubMed/NCBI | |
Goto K, Osaki M, Izutsu R, Tanaka H, Sasaki R, Tanio A, Satofuka H, Kazuki Y, Yamamoto M, Kugoh H, et al: Establishment of an antibody specific for AMIGO2 improves immunohistochemical evaluation of liver metastases and clinical outcomes in patients with colorectal cancer. Diagn Pathol. 17:162022. View Article : Google Scholar : PubMed/NCBI | |
Tanio A, Saito H, Amisaki M, Hara K, Sugezawa K, Uejima C, Tada Y, Kihara K, Yamamoto M, Nosaka K, et al: AMIGO2 as a novel indicator of liver metastasis in patients with colorectal cancer. Oncol Lett. 21:2782021. View Article : Google Scholar : PubMed/NCBI | |
Thomas D, Rathinavel AK and Radhakrishnan P: Altered glycosylation in cancer: A promising target for biomarkers and therapeutics. Biochim Biophys Acta Rev Cancer. 1875:1884642021. View Article : Google Scholar : PubMed/NCBI | |
Royal RE, Levy C, Turner K, Mathur A, Hughes M, Kammula US, Sherry RM, Topalian SL, Yang JC, Lowy I and Rosenberg SA: Phase 2 trial of single agent Ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. J Immunother. 33:828–833. 2010. View Article : Google Scholar : PubMed/NCBI | |
Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, et al: Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 366:2455–2465. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Du W, Feng K, Liu K, Li C, Li S and Yin H: AMIGO2 is a pivotal therapeutic target related to M2 polarization of macrophages in pancreatic ductal adenocarcinoma. Aging (Albany NY). 16:1111–1127. 2024. View Article : Google Scholar : PubMed/NCBI | |
Kishton RJ, Sukumar M and Restifo NP: Metabolic regulation of T cell longevity and function in tumor immunotherapy. Cell Metab. 26:94–109. 2017. View Article : Google Scholar : PubMed/NCBI | |
MacNabb BW, Tumuluru S, Chen X, Godfrey J, Kasal DN, Yu J, Jongsma MLM, Spaapen RM, Kline DE and Kline J: Dendritic cells can prime anti-tumor CD8(+) T cell responses through major histocompatibility complex cross-dressing. Immunity. 55:982–997.e8. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hess KR, Varadhachary GR, Taylor SH, Wei W, Raber MN, Lenzi R and Abbruzzese JL: Metastatic patterns in adenocarcinoma. Cancer. 106:1624–1633. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hanley WD, Burdick MM, Konstantopoulos K and Sackstein R: CD44 on LS174T colon carcinoma cells possesses E-selectin ligand activity. Cancer Res. 65:5812–5817. 2005. View Article : Google Scholar : PubMed/NCBI | |
Izutsu R, Osaki M, Jehung JP, Seong HK and Okada F: Liver metastasis formation is defined by AMIGO2 expression via adhesion to hepatic endothelial cells in human gastric and colorectal cancer cells. Pathol Res Pract. 237:1540152022. View Article : Google Scholar : PubMed/NCBI | |
Izutsu R, Osaki M, Nemoto H, Jingu M, Sasaki R, Yoshioka Y, Ochiya T and Okada F: AMIGO2 contained in cancer cell-derived extracellular vesicles enhances the adhesion of liver endothelial cells to cancer cells. Sci Rep. 12:7922022. View Article : Google Scholar : PubMed/NCBI | |
Kanda Y, Osaki M, Onuma K, Sonoda A, Kobayashi M, Hamada J, Nicolson GL, Ochiya T and Okada F: Amigo2-upregulation in tumour cells facilitates their attachment to liver endothelial cells resulting in liver metastases. Sci Rep. 7:435672017. View Article : Google Scholar : PubMed/NCBI | |
Han Z, Feng Y, Deng Y, Tang Z, Cai S, Zhuo Y, Liang Y, Ye J, Cai Z, Yang S, et al: Integrated analysis reveals prognostic value and progression-related role of AMIGO2 in prostate cancer. Transl Androl Urol. 11:914–928. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lengyel E: Ovarian cancer development and metastasis. Am J Pathol. 177:1053–1064. 2010. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Yang J, Shi Z, Tan X, Jin N, O'Brien C, Ott C, Grisoli A, Lee E, Volk K, et al: In vivo selection of highly metastatic human ovarian cancer sublines reveals role for AMIGO2 in intra-peritoneal metastatic regulation. Cancer Lett. 503:163–173. 2021. View Article : Google Scholar : PubMed/NCBI | |
Burleson KM, Casey RC, Skubitz KM, Pambuccian SE, Oegema TR Jr and Skubitz AP: Ovarian carcinoma ascites spheroids adhere to extracellular matrix components and mesothelial cell monolayers. Gynecol Oncol. 93:170–181. 2004. View Article : Google Scholar : PubMed/NCBI | |
L'Espérance S, Bachvarova M, Tetu B, Mes-Masson AM and Bachvarov D: Global gene expression analysis of early response to chemotherapy treatment in ovarian cancer spheroids. BMC Genomics. 9:992008. View Article : Google Scholar : PubMed/NCBI | |
Shield K, Ackland ML, Ahmed N and Rice GE: Multicellular spheroids in ovarian cancer metastases: Biology and pathology. Gynecol Oncol. 113:143–148. 2009. View Article : Google Scholar : PubMed/NCBI | |
Koskas M, Amant F, Mirza MR and Creutzberg CL: Cancer of the corpus uteri: 2021 update. Int J Gynaecol Obstet. 155 (Suppl 1):S45–S60. 2021. View Article : Google Scholar | |
Simmen FA, Su Y, Xiao R, Zeng Z and Simmen RC: The Krüppel-like factor 9 (KLF9) network in HEC-1-A endometrial carcinoma cells suggests the carcinogenic potential of dys-regulated KLF9 expression. Reprod Biol Endocrinol. 6:412008. View Article : Google Scholar : PubMed/NCBI | |
Iida Y, Osaki M, Sato S, Izutsu R, Seong H, Okawa M, Osaku D, Komatsu H, Taniguchi F, Okada F, et al: AMIGO2 expression as a predictor of recurrence in cervical cancer with intermediate risk. Mol Clin Oncol. 19:562023. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Chen Y, Lu LL, Xie XL, Huan R, Wu LF, Tan LN, Xu T and Jin Y: The role and therapeutic potential of Non-coding RNAs in resistance to EGFR-TKIs targeted therapy for Non-small cell lung cancer. Curr Med Chem. Feb 16–2024.doi: 10.2174/0109298673275752231219080500 (Epub ahead of print). | |
Duma N, Santana-Davila R and Molina JR: Non-Small cell lung cancer: Epidemiology, screening, diagnosis, and treatment. Mayo Clin Proc. 94:1623–1640. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen LK, Lin SP, Xie YH, Tan XP, Xiong BH, Zeng XF, Zhu CR, Cao SY, Ye XY, Liu HJ and Wu XP: AMIGO2 attenuates innate cisplatin sensitivity by suppression of GSDME-conferred pyroptosis in non-small cell lung cancer. J Cell Mol Med. 27:2412–2423. 2023. View Article : Google Scholar : PubMed/NCBI | |
Arciero CA, Guo Y, Jiang R, Behera M, O'Regan R, Peng L and Li X: ER+/HER2+ breast cancer has different metastatic patterns and better survival than ER-/HER2+ breast cancer. Clin Breast Cancer. 19:236–245. 2019. View Article : Google Scholar : PubMed/NCBI | |
van de Ven S, Smit VT, Dekker TJ, Nortier JW and Kroep JR: Discordances in ER, PR and HER2 receptors after neoadjuvant chemotherapy in breast cancer. Cancer Treat Rev. 37:422–430. 2011.PubMed/NCBI | |
Najjar S and Allison KH: Updates on breast biomarkers. Virchows Arch. 480:163–176. 2022. View Article : Google Scholar : PubMed/NCBI | |
Shuai C, Yuan F, Liu Y, Wang C, Wang J and He H: Estrogen receptor-positive breast cancer survival prediction and analysis of resistance-related genes introduction. PeerJ. 9:e122022021. View Article : Google Scholar : PubMed/NCBI | |
Sonzogni O, Haynes J, Seifried LA, Kamel YM, Huang K, BeGora MD, Yeung FA, Robert-Tissot C, Heng YJ, Yuan X, et al: Reporters to mark and eliminate basal or luminal epithelial cells in culture and in vivo. PLoS Biol. 16:e20040492018. View Article : Google Scholar : PubMed/NCBI | |
Fontanals-Cirera B, Hasson D, Vardabasso C, Di Micco R, Agrawal P, Chowdhury A, Gantz M, de Pablos-Aragoneses A, Morgenstern A, Wu P, et al: Harnessing BET inhibitor sensitivity reveals AMIGO2 as a melanoma survival gene. Mol Cell. 68:731–744.e9. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gallagher SJ, Mijatov B, Gunatilake D, Tiffen JC, Gowrishankar K, Jin L, Pupo GM, Cullinane C, Prinjha RK, Smithers N, et al: The epigenetic regulator I-BET151 induces BIM-dependent apoptosis and cell cycle arrest of human melanoma cells. J Invest Dermatol. 134:2795–2805. 2014. View Article : Google Scholar : PubMed/NCBI | |
Vardabasso C, Gaspar-Maia A, Hasson D, Pünzeler S, Valle-Garcia D, Straub T, Keilhauer EC, Strub T, Dong J, Panda T, et al: Histone variant H2A.Z.2 mediates proliferation and drug sensitivity of malignant melanoma. Mol Cell. 59:75–88. 2015. View Article : Google Scholar : PubMed/NCBI | |
Segura MF, Fontanals-Cirera B, Gaziel-Sovran A, Guijarro MV, Hanniford D, Zhang G, González-Gomez P, Morante M, Jubierre L, Zhang W, et al: BRD4 sustains melanoma proliferation and represents a new target for epigenetic therapy. Cancer Res. 73:6264–6276. 2013. View Article : Google Scholar : PubMed/NCBI | |
Na HW, Shin WS, Ludwig A and Lee ST: The cytosolic domain of protein-tyrosine kinase 7 (PTK7), generated from sequential cleavage by a disintegrin and metalloprotease 17 (ADAM17) and γ-secretase, enhances cell proliferation and migration in colon cancer cells. J Biol Chem. 287:25001–25009. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cui Y, Li C, Jiang Z, Zhang S, Li Q, Liu X, Zhou Y, Li R, Wei L, Li L, et al: Single-cell transcriptome and genome analyses of pituitary neuroendocrine tumors. Neuro Oncol. 23:1859–1871. 2021. View Article : Google Scholar : PubMed/NCBI | |
Dongre A and Weinberg RA: New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 20:69–84. 2019. View Article : Google Scholar : PubMed/NCBI | |
Porter AC and Vaillancourt RR: Tyrosine kinase receptor-activated signal transduction pathways which lead to oncogenesis. Oncogene. 17:1343–1352. 1998. View Article : Google Scholar : PubMed/NCBI | |
Tamgüney T, Zhang C, Fiedler D, Shokat K and Stokoe D: Analysis of 3-phosphoinositide-dependent kinase-1 signaling and function in ES cells. Exp Cell Res. 314:2299–2312. 2008. View Article : Google Scholar : PubMed/NCBI |