Roles of DEPDC1 in various types of cancer (Review)
- Authors:
- Danqi Liu
- Haima Li
- Jia Ouyang
-
Affiliations: School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100044, P.R. China, Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China, Department of Neurosurgery, Peking University People's Hospital, Beijing 100044, P.R. China - Published online on: August 29, 2024 https://doi.org/10.3892/ol.2024.14651
- Article Number: 518
-
Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Consonni SV, Maurice MM and Bos JL: DEP domains: Structurally similar but functionally different. Nat Rev Mol Cell Biol. 15:357–362. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kanehira M, Harada Y, Takata R, Shuin T, Miki T, Fujioka T, Nakamura Y and Katagiri T: Involvement of upregulation of DEPDC1 (DEP domain containing 1) in bladder carcinogenesis. Oncogene. 26:6448–6455. 2007. View Article : Google Scholar : PubMed/NCBI | |
Harada Y, Kanehira M, Fujisawa Y, Takata R, Shuin T, Miki T, Fujioka T, Nakamura Y and Katagiri T: Cell-permeable peptide DEPDC1-ZNF224 interferes with transcriptional repression and oncogenicity in bladder cancer cells. Cancer Res. 70:5829–5839. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kassambara A, Schoenhals M, Moreaux J, Veyrune JL, Rème T, Goldschmidt H, Hose D and Klein B: Inhibition of DEPDC1A, a bad prognostic marker in multiple myeloma, delays growth and induces mature plasma cell markers in malignant plasma cells. PLoS One. 8:e627522013. View Article : Google Scholar : PubMed/NCBI | |
Okayama H, Kohno T, Ishii Y, Shimada Y, Shiraishi K, Iwakawa R, Furuta K, Tsuta K, Shibata T, Yamamoto S, et al: Identification of genes upregulated in ALK-positive and EGFR/KRAS/ALK-negative lung adenocarcinomas. Cancer Res. 72:100–111. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sendoel A, Maida S, Zheng X, Teo Y, Stergiou L, Rossi CA, Subasic D, Pinto SM, Kinchen JM, Shi M, et al: DEPDC1/LET-99 participates in an evolutionarily conserved pathway for anti-tubulin drug-induced apoptosis. Nat Cell Biol. 16:812–820. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Jiang Y, Jiang M, Zhang J, Yang B, She Y, Wang W, Deng Y and Ye Y: Protocadherin 10 inhibits cell proliferation and induces apoptosis via regulation of DEP domain containing 1 in endometrial endometrioid carcinoma. Exp Mol Pathol. 100:344–352. 2016. View Article : Google Scholar : PubMed/NCBI | |
Huang L, Chen K, Cai ZP, Chen FC, Shen HY, Zhao WH, Yang SJ, Chen XB, Tang GX and Lin X: DEPDC1 promotes cell proliferation and tumor growth via activation of E2F signaling in prostate cancer. Biochem Biophys Res Commun. 490:707–712. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Li A, Jin J and Huang G: Targeted interfering DEP domain containing 1 protein induces apoptosis in A549 lung adenocarcinoma cells through the NF-κB signaling pathway. Onco Targets Ther. 10:4443–4454. 2017. View Article : Google Scholar : PubMed/NCBI | |
Johannsdottir HK, Jonsson G, Johannesdottir G, Agnarsson BA, Eerola H, Arason A, Heikkila P, Egilsson V, Olsson H, Johannsson OT, et al: Chromosome 5 imbalance mapping in breast tumors from BRCA1 and BRCA2 mutation carriers and sporadic breast tumors. Int J Cancer. 119:1052–1060. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zuo X, Wang D, Tao C, Dou X, Zhao Z, Zhang J, Huang S, Li Y, Zhang X, Bu Y and Wang Y: DEPDC1B is a novel direct target of B-Myb and contributes to malignant progression and immune infiltration in lung adenocarcinoma. Front Biosci (Landmark Ed). 29:2042024. View Article : Google Scholar : PubMed/NCBI | |
Chen D, Ito S, Hyodo T, Asano-Inami E, Yuan H and Senga T: Phosphorylation of DEPDC1 at Ser110 is required to maintain centrosome organization during mitosis. Exp Cell Res. 358:101–110. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mi Y, Zhang C, Bu Y, Zhang Y, He L, Li H, Zhu H, Li Y, Lei Y and Zhu J: DEPDC1 is a novel cell cycle related gene that regulates mitotic progression. BMB Rep. 48:413–418. 2015. View Article : Google Scholar : PubMed/NCBI | |
Guo W, Li H, Liu H, Ma X, Yang S and Wang Z: DEPDC1 drives hepatocellular carcinoma cell proliferation, invasion and angiogenesis by regulating the CCL20/CCR6 signaling pathway. Oncol Rep. 42:1075–1089. 2019.PubMed/NCBI | |
Wang W, Li A, Han X, Wang Q, Guo J, Wu Y, Wang C and Huang G: DEPDC1 up-regulates RAS expression to inhibit autophagy in lung adenocarcinoma cells. J Cell Mol Med. 24:13303–13313. 2020. View Article : Google Scholar : PubMed/NCBI | |
Amisaki M, Yagyu T, Uchinaka EI, Morimoto M, Hanaki T, Watanabe J, Tokuyasu N, Sakamoto T, Honjo S and Fujiwara Y: Prognostic value of DEPDC1 expression in tumor and non-tumor tissue of patients with hepatocellular carcinoma. Anticancer Res. 39:4423–4430. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yuan SG, Liao WJ, Yang JJ, Huang GJ and Huang ZQ: DEP domain containing 1 is a novel diagnostic marker and prognostic predictor for hepatocellular carcinoma. Asian Pac J Cancer Prev. 15:10917–10922. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bin X, Luo Z, Wang J and Zhou S: Identification of a five immune term signature for prognosis and therapy options (immunotherapy versus targeted therapy) for patients with hepatocellular carcinoma. Comput Math Methods Med. 2023:89589622023. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Li Y, Dai Y, Wang D, Wang X, Cao Y, Liu W and Tao Z: Glycolysis-related gene expression profiling serves as a novel prognosis risk predictor for human hepatocellular carcinoma. Sci Rep. 11:188752021. View Article : Google Scholar : PubMed/NCBI | |
Pu Z, Zhu Y, Wang X, Zhong Y, Peng F and Zhang Y: Identification of prognostic biomarkers and correlation with immune infiltrates in hepatocellular carcinoma based on a competing endogenous RNA network. Front Genet. 12:5916232021. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Liu X, Zhou W, Lu S, Wu C, Wu Z, Liu R, Li X, Wu J, Liu Y, et al: Identification of key genes associated with the process of hepatitis B inflammation and cancer transformation by integrated bioinformatics analysis. Front Genet. 12:6545172021. View Article : Google Scholar : PubMed/NCBI | |
Shao F, Ling L, Li C, Huang X, Ye Y, Zhang M, Huang K, Pan J, Chen J and Wang Y: Establishing a metastasis-related diagnosis and prognosis model for lung adenocarcinoma through CRISPR library and TCGA database. J Cancer Res Clin Oncol. 149:885–899. 2023. View Article : Google Scholar : PubMed/NCBI | |
Shen J and Xi M: DEPDC1 is highly expressed in lung adenocarcinoma and promotes tumor cell proliferation. Zhongguo Fei Ai Za Zhi. 24:453–460. 2021.(In Chinese). PubMed/NCBI | |
Zhu Y, Sun L, Yu J, Xiang Y, Shen M, Wasan HS, Ruan S and Qiu S: Identification of biomarkers in colon cancer based on bioinformatic analysis. Transl Cancer Res. 9:4879–4895. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shen X and Han J: Overexpression of gene DEP domain containing 1 and its clinical prognostic significance in colorectal cancer. J Clin Lab Anal. 34:e236342020. View Article : Google Scholar : PubMed/NCBI | |
Miyata Y, Kumagai K, Nagaoka T, Kitaura K, Kaneda G, Kanazawa H, Suzuki S, Hamada Y and Suzuki R: Clinicopathological significance and prognostic value of Wilms' tumor gene expression in colorectal cancer. Cancer Biomark. 15:789–797. 2015. View Article : Google Scholar : PubMed/NCBI | |
Colak D, Nofal A, Albakheet A, Nirmal M, Jeprel H, Eldali A, Al-Tweigeri T, Tulbah A, Ajarim D, Malik OA, et al: Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. PLoS One. 8:e632042013. View Article : Google Scholar : PubMed/NCBI | |
Kretschmer C, Sterner-Kock A, Siedentopf F, Schoenegg W, Schlag PM and Kemmner W: Identification of early molecular markers for breast cancer. Mol Cancer. 10:152011. View Article : Google Scholar : PubMed/NCBI | |
Sang M, Wu M, Meng L, Zheng Y, Gu L, Liu F and Sang M: Identification of epithelial-mesenchymal transition-related circRNA-miRNA-mRNA ceRNA regulatory network in breast cancer. Pathol Res Pract. 216:1530882020. View Article : Google Scholar : PubMed/NCBI | |
Kim J: In silico analysis of differentially expressed genesets in metastatic breast cancer identifies potential prognostic biomarkers. World J Surg Oncol. 19:1882021. View Article : Google Scholar : PubMed/NCBI | |
Ke Y, Zhuang X and You L: Identification of core genes shared by endometrial cancer and ovarian cancer using an integrated approach. Cell Mol Biol (Noisy-le-grand). 68:140–145. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xu F, Guan Y, Xue L, Huang S, Gao K, Yang Z and Chong T: The effect of a novel glycolysis-related gene signature on progression, prognosis and immune microenvironment of renal cell carcinoma. BMC Cancer. 20:12072020. View Article : Google Scholar : PubMed/NCBI | |
Ma Y, Guo J, Li D and Cai X: Identification of potential key genes and functional role of CENPF in osteosarcoma using bioinformatics and experimental analysis. Exp Ther Med. 23:802022. View Article : Google Scholar : PubMed/NCBI | |
Shen L, Li H, Liu R, Zhou C, Bretches M, Gong X, Lu L, Zhang Y, Zhao K, Ning B, et al: DEPDC1 as a crucial factor in the progression of human osteosarcoma. Cancer Med. 12:5798–5808. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Zou Z, Dai H, Ye R, Di X, Li R, Ha Y, Sun Y and Gan S: Key genes involved in cell cycle arrest and DNA damage repair identified in anaplastic thyroid carcinoma using integrated bioinformatics analysis. Transl Cancer Res. 9:4188–4203. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gong Z, Chu H, Chen J, Jiang L, Gong B, Zhu P, Zhang C, Wang Z, Zhang W, Wang J, et al: DEPDC1 upregulation promotes cell proliferation and predicts poor prognosis in patients with gastric cancer. Cancer Biomark. 30:299–307. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mishra NK, Niu M, Southekal S, Bajpai P, Elkholy A, Manne U and Guda C: Identification of prognostic markers in cholangiocarcinoma using altered DNA methylation and gene expression profiles. Front Genet. 11:5221252020. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Lin H, Jiang H, Jiang H, Xie T, Wang B, Huang X, Lin J, Xu A, Li R, et al: A key genomic signature associated with lymphovascular invasion in head and neck squamous cell carcinoma. BMC Cancer. 20:2662020. View Article : Google Scholar : PubMed/NCBI | |
Zheng L, Li L, Xie J, Jin H and Zhu N: Six novel biomarkers for diagnosis and prognosis of esophageal squamous cell carcinoma: Validated by scRNA-seq and qPCR. J Cancer. 12:899–911. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Wu Z, Sun R, Nie S, Meng H, Zhong Y, Nie X and Cheng W: Using mRNAsi to identify prognostic-related genes in endometrial carcinoma based on WGCNA. Life Sci. 258:1182312020. View Article : Google Scholar : PubMed/NCBI | |
Noll JE, Vandyke K, Hewett DR, Mrozik KM, Bala RJ, Williams SA, Kok CH and Zannettino AC: PTTG1 expression is associated with hyperproliferative disease and poor prognosis in multiple myeloma. J Hematol Oncol. 8:1062015. View Article : Google Scholar : PubMed/NCBI | |
Stangeland B, Mughal AA, Grieg Z, Sandberg CJ, Joel M, Nygård S, Meling T, Murrell W, Vik Mo EO and Langmoen IA: Combined expressional analysis, bioinformatics and targeted proteomics identify new potential therapeutic targets in glioblastoma stem cells. Oncotarget. 6:26192–26215. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhu QY: Bioinformatics analysis of the pathogenic link between Epstein-Barr virus infection, systemic lupus erythematosus and diffuse large B cell lymphoma. Sci Rep. 13:63102023. View Article : Google Scholar : PubMed/NCBI | |
Pollino S, Benassi MS, Pazzaglia L, Conti A, Bertani N, Righi A, Piccinni-Leopardi M, Picci P and Perris R: Prognostic role of XTP1/DEPDC1B and SDP35/DEPDC1A in high grade soft-tissue sarcomas. Histol Histopathol. 33:597–608. 2018.PubMed/NCBI | |
Jia B, Liu J, Hu X, Xia L and Han Y: Pan-cancer analysis of DEPDC1 as a candidate prognostic biomarker and associated with immune infiltration. Ann Transl Med. 10:13552022. View Article : Google Scholar : PubMed/NCBI | |
Guo J, Zhou S, Huang P, Xu S, Zhang G, He H, Zeng Y, Xu CX, Kim H and Tan Y: NNK-mediated upregulation of DEPDC1 stimulates the progression of oral squamous cell carcinoma by inhibiting CYP27B1 expression. Am J Cancer Res. 10:1745–1760. 2020.PubMed/NCBI | |
Hao S, Tian W, Chen Y, Wang L, Jiang Y, Gao B and Luo D: MicroRNA-374c-5p inhibits the development of breast cancer through TATA-box binding protein associated factor 7-mediated transcriptional regulation of DEP domain containing 1. J Cell Biochem. 120:15360–15368. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Jiang S, Liu J, Ma G, Zheng J and Zhang Y: DEP domain containing 1 promotes proliferation, invasion, and epithelial-mesenchymal transition in colorectal cancer by enhancing expression of suppressor of zest 12. Cancer Biother Radiopharm. 36:36–44. 2021.PubMed/NCBI | |
Tian C, Abudoureyimu M, Lin X, Chu X and Wang R: Linc-ROR facilitates progression and angiogenesis of hepatocellular carcinoma by modulating DEPDC1 expression. Cell Death Dis. 12:10472021. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Wang Y, Wang J, Li L and Bi J: Identification of a prognosis-related risk signature for bladder cancer to predict survival and immune landscapes. J Immunol Res. 2021:32363842021. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Wu J, Luo W, Zhang H, Shi G, Shen Y and Zhu Y, Ma C, Dai B, Ye D and Zhu Y: ALPK2 acts as tumor promotor in development of bladder cancer through targeting DEPDC1A. Cell Death Dis. 12:6612021. View Article : Google Scholar : PubMed/NCBI | |
Barta JA, Powell CA and Wisnivesky JP: Global epidemiology of lung cancer. Ann Glob Health. 85:82019. View Article : Google Scholar : PubMed/NCBI | |
Nakano I, Paucar AA, Bajpai R, Dougherty JD, Zewail A, Kelly TK, Kim KJ, Ou J, Groszer M, Imura T, et al: Maternal embryonic leucine zipper kinase (MELK) regulates multipotent neural progenitor proliferation. J Cell Biol. 170:413–427. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ganguly R, Hong CS, Smith LGF, Kornblum HI and Nakano I: Maternal embryonic leucine zipper kinase: Key kinase for stem cell phenotype in glioma and other cancers. Mol Cancer Ther. 13:1393–1398. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chung S, Kijima K, Kudo A, Fujisawa Y, Harada Y, Taira A, Takamatsu N, Miyamoto T, Matsuo Y and Nakamura Y: Preclinical evaluation of biomarkers associated with antitumor activity of MELK inhibitor. Oncotarget. 7:18171–18182. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bolomsky A, Heusschen R, Schlangen K, Stangelberger K, Muller J, Schreiner W, Zojer N, Caers J and Ludwig H: Maternal embryonic leucine zipper kinase is a novel target for proliferation-associated high-risk myeloma. Haematologica. 103:325–335. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Li X, Hao Y, Wang F, Cheng Z, Geng H and Geng D: STAT1-induced upregulation of lncRNA KTN1-AS1 predicts poor prognosis and facilitates non-small cell lung cancer progression via miR-23b/DEPDC1 axis. Aging (Albany NY). 12:8680–8701. 2020. View Article : Google Scholar : PubMed/NCBI | |
Johnson P, Zhou Q, Dao DY and Lo YMD: Circulating biomarkers in the diagnosis and management of hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 19:670–681. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Tian Y, Zhong W, Wang N, Wang Y, Zhang Y, Zhang Z, Li J, Ma F, Zhao Z and Peng Y: Artemisia argyi essential oil inhibits hepatocellular carcinoma metastasis via suppression of DEPDC1 dependent Wnt/β-catenin signaling pathway. Front Cell Dev Biol. 9:6647912021. View Article : Google Scholar : PubMed/NCBI | |
Qu D, Cui F, Lu D, Yang Y and Xu Y: DEP domain containing 1 predicts prognosis of hepatocellular carcinoma patients and regulates tumor proliferation and metastasis. Cancer Sci. 110:157–165. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhou C, Wang P, Tu M, Huang Y, Xiong F and Wu Y: DEPDC1 promotes cell proliferation and suppresses sensitivity to chemotherapy in human hepatocellular carcinoma. Biosci Rep. 39:BSR201909462019. View Article : Google Scholar : PubMed/NCBI | |
Xu C, Luo L, Yu Y, Zhang Z, Zhang Y, Li H, Cheng Y, Qin H, Zhang X, Ma H and Li Y: Screening therapeutic targets of ribavirin in hepatocellular carcinoma. Oncol Lett. 15:9625–9632. 2018.PubMed/NCBI | |
Lewandowski M, Lipiński P, Bednarski I, Mik M and Dziki A: Knowledge and awareness of colorectal cancer. Pol Przegl Chir. 92:34–41. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sharen G, Li X, Sun J, Zhang L, Xi W, Zhao X, Han F, Jia L, A R, Cheng H and Hou M: Silencing eL31 suppresses the progression of colorectal cancer via targeting DEPDC1. J Transl Med. 20:4932022. View Article : Google Scholar : PubMed/NCBI | |
Zhao B, Wang Y, Zhao X, Ni J, Zhu X, Fu Y and Yang F: SIRT1 enhances oxaliplatin resistance in colorectal cancer through microRNA-20b-3p/DEPDC1 axis. Cell Biol Int. 46:2107–2117. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lou T, Zhang L, Jin Z, Miao C, Wang J and Ke K: miR-455-5p enhances 5-fluorouracil sensitivity in colorectal cancer cells by targeting PIK3R1 and DEPDC1. Open Med (Wars). 17:847–856. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wilkinson L and Gathani T: Understanding breast cancer as a global health concern. Br J Radiol. 95:202110332022. View Article : Google Scholar : PubMed/NCBI | |
Zhao H, Yu M, Sui L, Gong B, Zhou B, Chen J, Gong Z and Hao C: High expression of DEPDC1 promotes malignant phenotypes of breast cancer cells and predicts poor prognosis in patients with breast cancer. Front Oncol. 9:2622019. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Du Y, Xu S, Jiang Y, Yuan C, Zhou L, Ma X, Bai Y, Lu J and Ma J: DEPDC1, negatively regulated by miR-26b, facilitates cell proliferation via the up-regulation of FOXM1 expression in TNBC. Cancer Lett. 442:242–251. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sekhoacha M, Riet K, Motloung P, Gumenku L, Adegoke A and Mashele S: Prostate cancer review: Genetics, diagnosis, treatment options, and alternative approaches. Molecules. 27:57302022. View Article : Google Scholar : PubMed/NCBI | |
Ramalho-Carvalho J, Martins JB, Cekaite L, Sveen A, Torres-Ferreira J, Graça I, Costa-Pinheiro P, Eilertsen IA, Antunes L, Oliveira J, et al: Epigenetic disruption of miR-130a promotes prostate cancer by targeting SEC23B and DEPDC1. Cancer Lett. 385:150–159. 2017. View Article : Google Scholar : PubMed/NCBI | |
Badwelan M, Muaddi H, Ahmed A, Lee KT and Tran SD: Oral squamous cell carcinoma and concomitant primary tumors, what do we know? A review of the literature. Curr Oncol. 30:3721–3734. 2023. View Article : Google Scholar : PubMed/NCBI | |
Qiu J, Tang Y, Liu L, Yu J, Chen Z, Chen H and Yuan R: FOXM1 is regulated by DEPDC1 to facilitate development and metastasis of oral squamous cell carcinoma. Front Oncol. 12:8159982022. View Article : Google Scholar : PubMed/NCBI | |
Huang G, Chen S, Washio J, Paka Lubamba G, Takahashi N and Li C: Glycolysis-related gene analyses indicate that DEPDC1 promotes the malignant progression of oral squamous cell carcinoma via the WNT/β-catenin signaling pathway. Int J Mol Sci. 24:19922023. View Article : Google Scholar : PubMed/NCBI | |
Pietras W: Advances and changes in the treatment of children with nephroblastoma. Adv Clin Exp Med. 21:809–820. 2012.PubMed/NCBI | |
Geng G, Li Q, Guo X, Ni Q, Xu Y, Ma Z, Wang Y and Ming M: FOXO3a-modulated DEPDC1 promotes malignant progression of nephroblastoma via the Wnt/β-catenin signaling pathway. Mol Med Rep. 26:7272022. View Article : Google Scholar : PubMed/NCBI | |
Geng G, Xu Y, Li Q, Li Q, Yuan L, Dong M and Ming M: S100A16 cooperates with DEPDC1 to promote the progression and angiogenesis of nephroblastoma through PI3K/Akt/mTOR pathway. Pol J Pathol. 74:182–193. 2023. View Article : Google Scholar : PubMed/NCBI | |
Feng X, Zhang C, Zhu L, Zhang L, Li H, He L, Mi Y, Wang Y, Zhu J and Bu Y: DEPDC1 is required for cell cycle progression and motility in nasopharyngeal carcinoma. Oncotarget. 8:63605–63619. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kikuchi R, Sampetrean O, Saya H, Yoshida K and Toda M: Functional analysis of the DEPDC1 oncoantigen in malignant glioma and brain tumor initiating cells. J Neurooncol. 133:297–307. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yang M, Zhang H, Gao S and Huang W: DEPDC1 and KIF4A synergistically inhibit the malignant biological behavior of osteosarcoma cells through Hippo signaling pathway. J Orthop Surg Res. 18:1452023. View Article : Google Scholar : PubMed/NCBI | |
Peng WX, Koirala P and Mo YY: LncRNA-mediated regulation of cell signaling in cancer. Oncogene. 36:5661–5667. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cui XY, Zhan JK and Liu YS: Roles and functions of antisense lncRNA in vascular aging. Ageing Res Rev. 72:1014802021. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Wu Y, Xu H, Zhang J, Zheng X, Zhang L, Wang Y, Chen W and Wang K: Identification and validation of a novel six-lncRNA-based prognostic model for lung adenocarcinoma. Front Oncol. 11:7755832022. View Article : Google Scholar : PubMed/NCBI | |
Li N, Yu K, Huang D, Li S, Zeng D, Li J and Fan L: Molecular characterization of cuproptosis-related lncRNAs: Defining molecular subtypes and a prognostic signature of ovarian cancer. Biol Trace Elem Res. 202:1428–1445. 2024. View Article : Google Scholar : PubMed/NCBI | |
Lu L, Liu LP, Zhao QQ, Gui R and Zhao QY: Identification of a ferroptosis-related LncRNA signature as a novel prognosis model for lung adenocarcinoma. Front Oncol. 11:6755452021. View Article : Google Scholar : PubMed/NCBI | |
Xu W, Wang J, Xu J, Li S, Zhang R, Shen C, Xie M, Zheng B and Gu M: Long non-coding RNA DEPDC1-AS1 promotes proliferation and migration of human gastric cancer cells HGC-27 via the human antigen R-F11R pathway. J Int Med Res. 50:30006052210931352022. View Article : Google Scholar : PubMed/NCBI | |
Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen LL, Chen R, Dean C, Dinger ME, Fitzgerald KA, et al: Long non-coding RNAs: Definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol. 24:430–447. 2023. View Article : Google Scholar : PubMed/NCBI | |
Arumugam P, Ramesh V, Sampathkumar B, Perumalsamy H, Balusamy SR, Suganya K, Balraj S, Nachimuthu SK and Sundaravadivelu S: Integrative transcriptome analysis of triple negative breast cancer profiles for identification of druggable targets. J Biomol Struct Dyn. 41:12106–12119. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wertz IE, Kusam S, Lam C, Okamoto T, Sandoval W, Anderson DJ, Helgason E, Ernst JA, Eby M, Liu J, et al: Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature. 471:110–114. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xiang Y, Zhang Q, Wei S, Huang C, Li Z and Gao Y: Paeoniflorin: A monoterpene glycoside from plants of Paeoniaceae family with diverse anticancer activities. J Pharm Pharmacol. 72:483–495. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xie L, Zhao YX, Zheng Y and Li XF: The pharmacology and mechanisms of platycodin D, an active triterpenoid saponin from Platycodon grandiflorus. Front Pharmacol. 14:11488532023. View Article : Google Scholar : PubMed/NCBI | |
Nelde A, Rammensee HG and Walz JS: The peptide vaccine of the future. Mol Cell Proteomics. 20:1000222021. View Article : Google Scholar : PubMed/NCBI | |
Obara W, Ohsawa R, Kanehira M, Takata R, Tsunoda T, Yoshida K, Takeda K, Katagiri T, Nakamura Y and Fujioka T: Cancer peptide vaccine therapy developed from oncoantigens identified through genome-wide expression profile analysis for bladder cancer. Jpn J Clin Oncol. 42:591–600. 2012. View Article : Google Scholar : PubMed/NCBI | |
Obara W, Eto M, Mimata H, Kohri K, Mitsuhata N, Miura I, Shuin T, Miki T, Koie T, Fujimoto H, et al: A phase I/II study of cancer peptide vaccine S-288310 in patients with advanced urothelial carcinoma of the bladder. Ann Oncol. 28:798–803. 2017. View Article : Google Scholar : PubMed/NCBI | |
Obara W, Hara I, Kato Y, Kato R, Inoue K, Sato F, Mimata H, Nakamura Y and Fujioka T: Immunotherapy with cancer peptides in combination with intravesical bacillus Calmette-Guerin for patients with non-muscle invasive bladder cancer. Cancer Immunol Immunother. 67:1371–1380. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fujiwara Y, Okada K, Omori T, Sugimura K, Miyata H, Ohue M, Kobayashi S, Takahashi H, Nakano H, Mochizuki C, et al: Multiple therapeutic peptide vaccines for patients with advanced gastric cancer. Int J Oncol. 50:1655–1662. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fujiwara Y, Sugimura K, Miyata H, Omori T, Nakano H, Mochizuki C, Shimizu K, Saito H, Ashida K, Honjyo S, et al: A pilot study of post-operative adjuvant vaccine for advanced gastric cancer. Yonago Acta Med. 60:101–105. 2017. View Article : Google Scholar : PubMed/NCBI | |
Daiko H, Marafioti T, Fujiwara T, Shirakawa Y, Nakatsura T, Kato K, Puccio I, Hikichi T, Yoshimura S, Nakagawa T, et al: Exploratory open-label clinical study to determine the S-588410 cancer peptide vaccine-induced tumor-infiltrating lymphocytes and changes in the tumor microenvironment in esophageal cancer patients. Cancer Immunol Immunother. 69:2247–2257. 2020. View Article : Google Scholar : PubMed/NCBI | |
Murahashi M, Hijikata Y, Yamada K, Tanaka Y, Kishimoto J, Inoue H, Marumoto T, Takahashi A, Okazaki T, Takeda K, et al: Phase I clinical trial of a five-peptide cancer vaccine combined with cyclophosphamide in advanced solid tumors. Clin Immunol. 166–167. 48–58. 2016. | |
Jonker DJ, O'Callaghan CJ, Karapetis CS, Zalcberg JR, Tu D, Au HJ, Berry SR, Krahn M, Price T, Simes RJ, et al: Cetuximab for the treatment of colorectal cancer. N Engl J Med. 357:2040–2048. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kikuchi R, Ueda R, Saito K, Shibao S, Nagashima H, Tamura R, Morimoto Y, Sasaki H, Noji S, Kawakami Y, et al: A pilot study of vaccine therapy with multiple glioma oncoantigen/glioma angiogenesis-associated antigen peptides for patients with recurrent/progressive high-grade glioma. J Clin Med. 8:2632019. View Article : Google Scholar : PubMed/NCBI | |
Tsuruta M, Ueda S, Yew PY, Fukuda I, Yoshimura S, Kishi H, Hamana H, Hirayama M, Yatsuda J, Irie A, et al: Bladder cancer-associated cancer-testis antigen-derived long peptides encompassing both CTL and promiscuous HLA class II-restricted Th cell epitopes induced CD4+ T cells expressing converged T-cell receptor genes in vitro. Oncoimmunology. 7:e14156872018. View Article : Google Scholar : PubMed/NCBI | |
Tosi A, Dalla Santa S, Cappuzzello E, Marotta C, Walerych D, Del Sal G, Zanovello P, Sommaggio R and Rosato A: Identification of a HLA-A*0201-restricted immunogenic epitope from the universal tumor antigen DEPDC1. Oncoimmunology. 6:e13133712017. View Article : Google Scholar : PubMed/NCBI | |
Yatsuda J, Irie A, Harada K, Michibata Y, Tsukamoto H, Senju S, Tomita Y, Yuno A, Hirayama M, Abu Sayem M, et al: Establishment of HLA-DR4 transgenic mice for the identification of CD4+ T cell epitopes of tumor-associated antigens. PLoS One. 8:e849082013. View Article : Google Scholar : PubMed/NCBI | |
Slingluff CL Jr, Lee S, Zhao F, Chianese-Bullock KA, Olson WC, Butterfield LH, Whiteside TL, Leming PD and Kirkwood JM: A randomized phase II trial of multiepitope vaccination with melanoma peptides for cytotoxic T cells and helper T cells for patients with metastatic melanoma (E1602). Clin Cancer Res. 19:4228–4238. 2013. View Article : Google Scholar : PubMed/NCBI |