Advances in the study of the mechanism of action of miR‑22 in liver lesions (Review)
- Authors:
- Minghe Wang
- Xuejing Wang
- Yanqi Wang
- Yikuo Gai
- Jingran Ye
- Xinyan Xu
- Xue You
-
Affiliations: College of Second Clinical Medical, Jining Medical University, Jining, Shandong 272067, P.R. China, College of Clinical Medical, Jining Medical University, Jining, Shandong 272067, P.R. China, Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, Shandong 272067, P.R. China - Published online on: September 6, 2024 https://doi.org/10.3892/ol.2024.14674
- Article Number: 541
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Asrani SK, Devarbhavi H, Eaton J and Kamath PS: Burden of liver diseases in the world. J Hepatol. 70:151–171. 2019. View Article : Google Scholar : PubMed/NCBI | |
Devarbhavi H, Asrani SK, Arab JP, Nartey YA, Pose E and Kamath PS: Global burden of liver disease: 2023 Update. J Hepatol. 79:516–537. 2023. View Article : Google Scholar : PubMed/NCBI | |
Boldo E, Santafe A, Mayol A, Lozoya R, Coret A, Escribano D, Fortea-Sanchis C, Muñoz A, Pastor JC, Perez de Lucia G and Bosch N: Rare site hepatocellular carcinoma metastasis. J Hepatocell Carcinoma. 7:39–44. 2020. View Article : Google Scholar : PubMed/NCBI | |
Singal AG, Kudo M and Bruix J: Breakthroughs in hepatocellular carcinoma therapies. Clin Gastroenterol Hepatol. 21:2135–2149. 2023. View Article : Google Scholar : PubMed/NCBI | |
Gao R, Kalathur RKR, Coto-Llerena M, Ercan C, Buechel D, Shuang S, Piscuoglio S, Dill MT, Camargo FD, Christofori G and Tang F: YAP/TAZ and ATF4 drive resistance to sorafenib in hepatocellular carcinoma by preventing ferroptosis. EMBO Mol Med. 13:e143512021. View Article : Google Scholar : PubMed/NCBI | |
Bodzin AS and Busuttil RW: Hepatocellular carcinoma: Advances in diagnosis, management, and long term outcome. World J Hepatol. 7:1157–1167. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Shi ZL, Yang X and Yin ZF: Targeting of circulating hepatocellular carcinoma cells to prevent postoperative recurrence and metastasis. World J Gastroenterol. 20:142–147. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhu JZ, Zhou QY, Wang YM, Dai YN, Zhu J, Yu CH and Li YM: Prevalence of fatty liver disease and the economy in China: A systematic review. World J Gastroenterol. 21:5695–5706. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Zheng Q, Zou B, Yeo YH, Li X, Li J, Xie X, Feng Y, Stave CD, Zhu Q, et al: The epidemiology of NAFLD in Mainland China with analysis by adjusted gross regional domestic product: A meta-analysis. Hepatol Int. 14:259–269. 2020. View Article : Google Scholar : PubMed/NCBI | |
Younossi ZM, Golabi P, Paik JM, Henry A, Van Dongen C and Henry L: The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): A systematic review. Hepatology. 77:1335–1347. 2023. View Article : Google Scholar : PubMed/NCBI | |
Greten TF, Villanueva A, Korangy F, Ruf B, Yarchoan M, Ma L, Ruppin E and Wang XW: Biomarkers for immunotherapy of hepatocellular carcinoma. Nat Rev Clin Oncol. 20:780–798. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Wei C, Guo CC, Bi RX, Xie J, Guan DH, Yang CH and Jiang YH: Prognostic value of microRNAs in hepatocellular carcinoma: A meta-analysis. Oncotarget. 8:107237–107257. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hu Y, Setayesh T, Vaziri F, Wu X, Hwang ST, Chen X and Yvonne Wan YJ: miR-22 gene therapy treats HCC by promoting anti-tumor immunity and enhancing metabolism. Mol Ther. 31:1829–1845. 2023. View Article : Google Scholar : PubMed/NCBI | |
Song W, Zheng C, Liu M, Xu Y, Qian Y, Zhang Z, Su H, Li X, Wu H, Gong P, et al: TRERNA1 upregulation mediated by HBx promotes sorafenib resistance and cell proliferation in HCC via targeting NRAS by sponging miR-22-3p. Mol Ther. 29:2601–2616. 2021. View Article : Google Scholar : PubMed/NCBI | |
Menon A, Abd-Aziz N, Khalid K, Poh CL and Naidu R: miRNA: A promising therapeutic target in cancer. Int J Mol Sci. 23:115022022. View Article : Google Scholar : PubMed/NCBI | |
Shukla GC, Singh J and Barik S: MicroRNAs: Processing, maturation, target recognition and regulatory functions. Mol Cell Pharmacol. 3:83–92. 2011.PubMed/NCBI | |
Cui S, Chen Y, Guo Y, Wang X and Chen D: Hsa-miR-22-3p inhibits liver cancer cell EMT and cell migration/invasion by indirectly regulating SPRY2. PLoS One. 18:e02815362023. View Article : Google Scholar : PubMed/NCBI | |
Fan T, Wang CQ, Li XT, Yang H, Zhou J and Song YJ: MiR-22-3p suppresses cell migration and invasion by targeting PLAGL2 in breast cancer. J Coll Physicians Surg Pak. 31:937–940. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Wang X, Jiang T, Zhang Z, Xie N and Yang G: MiR-22-3p suppresses NSCLC cell migration and EMT via targeting RAC1 expression. Funct Integr Genomics. 23:2812023. View Article : Google Scholar : PubMed/NCBI | |
Qiao H, Wang N, Guan QL, Xie P and Li XK: miR-22-3p suppresses cell proliferation and migration of gastric cancer by targeting ENO1. Altern Ther Health Med. 29:278–283. 2023.PubMed/NCBI | |
Liu Y, Chen X, Cheng R, Yang F, Yu M, Wang C, Cui S, Hong Y, Liang H, Liu M, et al: The Jun/miR-22/HuR regulatory axis contributes to tumourigenesis in colorectal cancer. Mol Cancer. 17:112018. View Article : Google Scholar : PubMed/NCBI | |
Zeng Z, Dong J, Li Y, Dong Z, Liu Z, Huang J, Wang Y, Zhen Y and Lu Y: The expression level and diagnostic value of microRNA-22 in HCC patients. Artif Cells Nanomed Biotechnol. 48:683–686. 2020. View Article : Google Scholar : PubMed/NCBI | |
Panella R, Petri A, Desai BN, Fagoonee S, Cotton CA, Nguyen PK, Lundin EM, Wagshal A, Wang DZ, Näär AM, et al: MicroRNA-22 is a key regulator of lipid and metabolic homeostasis. Int J Mol Sci. 24:128702023. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhang R, Li J, Han X, Lu H, Su J, Liu Y, Tian X, Wang M, Xiong Y, et al: MiR-22-3p and miR-29a-3p synergistically inhibit hepatic stellate cell activation by targeting AKT3. Exp Biol Med (Maywood). 247:1712–1731. 2022. View Article : Google Scholar : PubMed/NCBI | |
Azar S, Udi S, Drori A, Hadar R, Nemirovski A, Vemuri KV, Miller M, Sherill-Rofe D, Arad Y, Gur-Wahnon D, et al: Reversal of diet-induced hepatic steatosis by peripheral CB1 receptor blockade in mice is p53/miRNA-22/SIRT1/PPARα dependent. Mol Metab. 42:1010872020. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Wu FX, Luo HL, Liu JJ, Luo T, Bai T, Li LQ and Fan XH: Berberine upregulates miR-22-3p to suppress hepatocellular carcinoma cell proliferation by targeting Sp1. Am J Transl Res. 8:4932–4941. 2016.PubMed/NCBI | |
Huang W, Huang F, Zhang R and Luo H: LncRNA Neat1 expedites the progression of liver fibrosis in mice through targeting miR-148a-3p and miR-22-3p to upregulate Cyth3. Cell Cycle. 20:490–507. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li H, Zhang P and Li F, Yuan G, Wang X, Zhang A and Li F: Plasma miR-22-5p, miR-132-5p, and miR-150-3p are associated with acute myocardial infarction. Biomed Res Int. 2019:50126482019.PubMed/NCBI | |
Wang Y, Chang W, Zhang Y, Zhang L, Ding H, Qi H, Xue S, Yu H, Hu L, Liu D, et al: Circulating miR-22-5p and miR-122-5p are promising novel biomarkers for diagnosis of acute myocardial infarction. J Cell Physiol. 234:4778–4786. 2019. View Article : Google Scholar : PubMed/NCBI | |
Peng WX, Koirala P and Mo YY: LncRNA-mediated regulation of cell signaling in cancer. Oncogene. 36:5661–5667. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Shao T, Song M, Xie Y, Zhou J, Yin J, Ding N, Zou H, Li Y and Zhang J: MIR22HG acts as a tumor suppressor via TGFbeta/SMAD signaling and facilitates immunotherapy in colorectal cancer. Mol Cancer. 19:512020. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Shi C, Xu Q, Chen X, Zhu H and Zheng B: Long non-coding RNA MIR22HG suppresses cell proliferation and promotes apoptosis in prostate cancer cells by sponging microRNA-9-3p. Bioengineered. 13:13108–13117. 2022. View Article : Google Scholar : PubMed/NCBI | |
Deng X, Ye D, Hua K, Song H, Luo Q, Munankarmy A, Liu D, Zhou B, Zheng W, Zhou X, et al: MIR22HG inhibits breast cancer progression by stabilizing LATS2 tumor suppressor. Cell Death Dis. 12:8102021. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Li C and Su X: Emerging impact of the long noncoding RNA MIR22HG on proliferation and apoptosis in multiple human cancers. J Exp Clin Cancer Res. 39:2712020. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Yang Y, Yang T, Liu Y, Li A, Fu S, Wu M, Pan Z and Zhou W: microRNA-22, downregulated in hepatocellular carcinoma and correlated with prognosis, suppresses cell proliferation and tumourigenicity. Br J Cancer. 103:1215–1220. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yang F, Hu Y, Liu HX and Wan YJY: MiR-22-silenced cyclin A expression in colon and liver cancer cells is regulated by bile acid receptor. J Biol Chem. 290:6507–6515. 2015. View Article : Google Scholar : PubMed/NCBI | |
Huang JN, Zhang HM, Cai JD, Wang WL and Wang P: Long noncoding RNA DSCR8 promotes the proliferation of liver cancer cells and inhibits apoptosis via the miR-22-3p/ARPC5 axis. J Cancer. 14:35–49. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen M, Hu W, Xiong CL, Qu Z, Yin CQ, Wang YH, Luo CL, Guan Q, Yuan CH and Wang FB: miR-22 targets YWHAZ to inhibit metastasis of hepatocellular carcinoma and its down-regulation predicts a poor survival. Oncotarget. 7:80751–80764. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gjorgjieva M, Ay AS, Correia de Sousa M, Delangre E, Dolicka D, Sobolewski C, Maeder C, Fournier M, Sempoux C and Foti M: MiR-22 deficiency fosters hepatocellular carcinoma development in fatty liver. Cells. 11:28602022. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Yang P, Wang J, Liu Q, Wang T, Wang Y and Lin F: MiR-22 regulated T cell differentiation and hepatocellular carcinoma growth by directly targeting Jarid2. Am J Cancer Res. 11:2159–2173. 2021.PubMed/NCBI | |
Zhao L, Wang Y and Liu Q: Catalpol inhibits cell proliferation, invasion and migration through regulating miR-22-3p/MTA3 signalling in hepatocellular carcinoma. Exp Mol Pathol. 109:51–60. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Zhou Y, Huan L, Xu L, Shen M, Huang S and Liang L: LncRNA MIR22HG inhibits growth, migration and invasion through regulating the miR-10a-5p/NCOR2 axis in hepatocellular carcinoma cells. Cancer Sci. 110:973–984. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang DY, Zou XJ, Cao CH, Zhang T, Lei L, Qi XL, Liu L and Wu DH: Identification and functional characterization of long non-coding RNA MIR22HG as a tumor suppressor for hepatocellular carcinoma. Theranostics. 8:3751–3765. 2018. View Article : Google Scholar : PubMed/NCBI | |
Luo LJ, Zhang LP, Duan CY, Wang B, He NN, Abulimiti P and Lin Y: The inhibition role of miR-22 in hepatocellular carcinoma cell migration and invasion via targeting CD147. Cancer Cell Int. 17:172017. View Article : Google Scholar : PubMed/NCBI | |
Yim DGR, Ghosh S, Guy GR and Virshup DM: Casein kinase 1 regulates sprouty2 in FGF-ERK signaling. Oncogene. 34:474–484. 2015. View Article : Google Scholar : PubMed/NCBI | |
Quinn JJ and Chang HY: Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 17:47–62. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Hu K, Cao J, Wang P, Li J, Zeng K, He X, Tu PF, Tong T and Han L: lncRNA miat functions as a ceRNA to upregulate sirt1 by sponging miR-22-3p in HCC cellular senescence. Aging (Albany NY). 11:7098–7122. 2019. View Article : Google Scholar : PubMed/NCBI | |
Guo C, Zhou S, Yi W, Yang P, Li O, Liu J and Peng C: Long non-coding RNA muskelin 1 antisense RNA (MKLN1-AS) is a potential diagnostic and prognostic biomarker and therapeutic target for hepatocellular carcinoma. Exp Mol Pathol. 120:1046382021. View Article : Google Scholar : PubMed/NCBI | |
Pan G, Zhang J, You F, Cui T, Luo P, Wang S, Li X and Yuan Q: ETS proto-oncogene 1-activated muskelin 1 antisense RNA drives the malignant progression of hepatocellular carcinoma by targeting miR-22-3p to upregulate ETS proto-oncogene 1. Bioengineered. 13:1346–1358. 2022. View Article : Google Scholar : PubMed/NCBI | |
Guan B, Ma J, Yang Z, Yu F and Yao J: LncRNA NCK1-AS1 exerts oncogenic property in gastric cancer by targeting the miR-22-3p/BCL9 axis to activate the Wnt/β-catenin signaling. Environ Toxicol. 36:1640–1653. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Wang K, Jin T, Xu Q, He Y, Cui B and Wang Y: NCK1-AS1 enhances glioma cell proliferation, radioresistance and chemoresistance via miR-22-3p/IGF1R ceRNA pathway. Biomed Pharmacother. 129:1103952020. View Article : Google Scholar : PubMed/NCBI | |
Zhou W, Wang J, Zhang J, Wang Y, Jiang L, Guo T, Luo B, Xu Q and Huang Y: LncRNA NCK1-AS1 aggravates hepatocellular carcinoma by the miR-22-3p/YARS axis to activate PI3K/AKT signaling. J Gastrointestin Liver Dis. 31:48–59. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Lin X, Zhao Q, Wang Y, Jiang F, Ji C, Li Y, Gao J, Li J and Shen L: YARS as an oncogenic protein that promotes gastric cancer progression through activating PI3K-Akt signaling. J Cancer Res Clin Oncol. 146:329–342. 2020. View Article : Google Scholar : PubMed/NCBI | |
Pant K, Yadav AK, Gupta P, Islam R, Saraya A and Venugopal SK: Butyrate induces ROS-mediated apoptosis by modulating miR-22/SIRT-1 pathway in hepatic cancer cells. Redox Biol. 12:340–349. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yang F, Gong J, Wang G, Chen P, Yang L and Wang Z: Waltonitone inhibits proliferation of hepatoma cells and tumorigenesis via FXR-miR-22-CCNA2 signaling pathway. Oncotarget. 7:75165–75175. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xia L, Oyang L, Lin J, Tan S, Han Y, Wu N, Yi P, Tang L, Pan Q, Rao S, et al: The cancer metabolic reprogramming and immune response. Mol Cancer. 20:282021. View Article : Google Scholar : PubMed/NCBI | |
Donne R and Lujambio A: The liver cancer immune microenvironment: Therapeutic implications for hepatocellular carcinoma. Hepatology. 77:1773–1796. 2023.PubMed/NCBI | |
Jhunjhunwala S, Hammer C and Delamarre L: Antigen presentation in cancer: Insights into tumour immunogenicity and immune evasion. Nat Rev Cancer. 21:298–312. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kumar R, Theiss AL and Venuprasad K: RORgammat protein modifications and IL-17-mediated inflammation. Trends Immunol. 42:1037–1050. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lequeux A, Noman MZ, Xiao M, Van Moer K, Hasmim M, Benoit A, Bosseler M, Viry E, Arakelian T, Berchem G, et al: Targeting HIF-1 alpha transcriptional activity drives cytotoxic immune effector cells into melanoma and improves combination immunotherapy. Oncogene. 40:4725–4735. 2021. View Article : Google Scholar : PubMed/NCBI | |
Togashi Y, Shitara K and Nishikawa H: Regulatory T cells in cancer immunosuppression-implications for anticancer therapy. Nat Rev Clin Oncol. 16:356–371. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kang JH and Zappasodi R: Modulating Treg stability to improve cancer immunotherapy. Trends Cancer. 9:911–927. 2023. View Article : Google Scholar : PubMed/NCBI | |
Golden-Mason L and Rosen HR: Galectin-9: Diverse roles in hepatic immune homeostasis and inflammation. Hepatology. 66:271–279. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sauer N, Janicka N, Szlasa W, Skinderowicz B, Kołodzińska K, Dwernicka W, Oślizło M, Kulbacka J, Novickij V and Karłowicz-Bodalska K: TIM-3 as a promising target for cancer immunotherapy in a wide range of tumors. Cancer Immunol Immunother. 72:3405–3425. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Cheng S, Fan L, Zhang B and Xu S: TIM-3: An update on immunotherapy. Int Immunopharmacol. 99:1079332021. View Article : Google Scholar : PubMed/NCBI | |
Yang Q, Jiang W, Zhuang C, Geng Z, Hou C, Huang D, Hu L and Wang X: microRNA-22 downregulation of galectin-9 influences lymphocyte apoptosis and tumor cell proliferation in liver cancer. Oncol Rep. 34:1771–1778. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shao X, Zhu J, Shi Y, Fang H, Chen J, Zhang Y, Wang J, Jian H, Lan S, Jiang F, et al: Upregulated UBE4B expression correlates with poor prognosis and tumor immune infiltration in hepatocellular carcinoma. Aging (Albany NY). 14:9632–9646. 2022.PubMed/NCBI | |
McGlynn KA, Petrick JL and El-Serag HB: Epidemiology of hepatocellular carcinoma. Hepatology. 73 (Suppl 1):S4–S13. 2021. View Article : Google Scholar | |
Qiao DD, Yang J, Lei XF, Mi GL, Li SL, Li K, Xu CQ and Yang HL: Expression of microRNA-122 and microRNA-22 in HBV-related liver cancer and the correlation with clinical features. Eur Rev Med Pharmacol Sci. 21:742–747. 2017.PubMed/NCBI | |
Ke RS, Zhang K, Lv LZ, Dong YP, Pan F, Yang F, Cai QC and Jiang Y: Prognostic value and oncogene function of heterogeneous nuclear ribonucleoprotein A1 overexpression in HBV-related hepatocellular carcinoma. Int J Biol Macromol. 129:140–151. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shi C and Xu X: MicroRNA-22 is down-regulated in hepatitis B virus-related hepatocellular carcinoma. Biomed Pharmacother. 67:375–380. 2013. View Article : Google Scholar : PubMed/NCBI | |
Qian C and Liu Q: FOXO3a inhibits nephroblastoma cell proliferation, migration and invasion, and induces apoptosis through downregulating the Wnt/β-catenin signaling pathway. Mol Med Rep. 24:7962021. View Article : Google Scholar : PubMed/NCBI | |
Tian Y, Qi P and Hu X: Downregulated FOXO3a associates with poor prognosis and promotes cell invasion and migration via WNT/β-catenin signaling in cervical carcinoma. Front Oncol. 10:9032020. View Article : Google Scholar : PubMed/NCBI | |
Naugler WE, Sakurai T, Kim S, Maeda S, Kim K, Elsharkawy AM and Karin M: Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science. 317:121–124. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sakurai T, He G, Matsuzawa A, Yu GY, Maeda S, Hardiman G and Karin M: Hepatocyte necrosis induced by oxidative stress and IL-1 alpha release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell. 14:156–165. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jiang R, Deng L, Zhao L, Li X, Zhang F, Xia Y, Gao Y, Wang X and Sun B: miR-22 promotes HBV-related hepatocellular carcinoma development in males. Clin Cancer Res. 17:5593–5603. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pandey DP and Picard D: miR-22 inhibits estrogen signaling by directly targeting the estrogen receptor alpha mRNA. Mol Cell Biol. 29:3783–3790. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Pu J, Bai J, Yin Y, Wu K, Wang J, Shuai X, Gao J, Tao K, Wang G and Li H: EZH2 promotes hepatocellular carcinoma progression through modulating miR-22/galectin-9 axis. J Exp Clin Cancer Res. 37:32018. View Article : Google Scholar : PubMed/NCBI | |
Guo L, Hu C, Yao M and Han G: Mechanism of sorafenib resistance associated with ferroptosis in HCC. Front Pharmacol. 14:12074962023. View Article : Google Scholar : PubMed/NCBI | |
Cheng Y, Takeuchi H, Sonobe Y, Jin S, Wang Y, Horiuchi H, Parajuli B, Kawanokuchi J, Mizuno T and Suzumura A: Sirtuin 1 attenuates oxidative stress via upregulation of superoxide dismutase 2 and catalase in astrocytes. J Neuroimmunol. 269:38–43. 2014. View Article : Google Scholar : PubMed/NCBI | |
Portmann S, Fahrner R, Lechleiter A, Keogh A, Overney S, Laemmle A, Mikami K, Montani M, Tschan MP, Candinas D and Stroka D: Antitumor effect of SIRT1 inhibition in human HCC tumor models in vitro and in vivo. Mol Cancer Ther. 12:499–508. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jin Q, Hu H, Yan S, Jin L, Pan Y, Li X, Peng Y and Cao P: lncRNA MIR22HG-derived miR-22-5p enhances the radiosensitivity of hepatocellular carcinoma by increasing histone acetylation through the inhibition of HDAC2 activity. Front Oncol. 11:5725852021. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Yan B, Yang L, Li H, Fan Y, Zhu F, Zheng J and Ma X: Macrocytic anemia is associated with the severity of liver impairment in patients with hepatitis B virus-related decompensated cirrhosis: A retrospective cross-sectional study. BMC Gastroenterol. 18:1612018. View Article : Google Scholar : PubMed/NCBI | |
Adigun OO, Yarrarapu SNS, Zubair M and Khetarpal S: Alpha-fetoprotein analysis. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 | |
Li CQ, Huang H, Ruan SM, Hu HT, Xian MF, Xie XY, Lu MD, Kuang M, Wang Y and Chen LD: An assessment of liver lesions using a combination of CEUS LI-RADS and AFP. Abdom Radiol (NY). 47:1311–1320. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tzartzeva K and Singal AG: Testing for AFP in combination with ultrasound improves early liver cancer detection. Expert Rev Gastroenterol Hepatol. 12:947–949. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zekri ARN, Youssef ASED, El-Desouky ED, Ahmed OS, Lotfy MM, Nassar AAM and Bahnassey AA: Serum microRNA panels as potential biomarkers for early detection of hepatocellular carcinoma on top of HCV infection. Tumour Biol. 37:12273–12286. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xia L, Wang S, Zhang H, Yang Y, Wei J, Shi Y, Zou C, Liu J, Luo M, Huang A and Wang D: The HBx and HBc of hepatitis B virus can influence Id1 and Id3 by reducing their transcription and stability. Virus Res. 284:1979732020. View Article : Google Scholar : PubMed/NCBI | |
Li J, Zhang X, Chen L, Zhang Z, Zhang J, Wang W, Wu M, Shi B, Zhang X, Kozlowski M, et al: Circulating miR-210 and miR-22 combined with ALT predict the virological response to interferon-alpha therapy of CHB patients. Sci Rep. 7:156582017. View Article : Google Scholar : PubMed/NCBI | |
Hu Q, Wang Q, Zhang Y, Tao S, Zhang X, Liu X, Li X, Jiang X, Huang C, Xu W, et al: Baseline serum exosome-derived miRNAs predict HBeAg seroconversion in chronic hepatitis B patients treated with peginterferon. J Med Virol. 93:4939–4948. 2021. View Article : Google Scholar : PubMed/NCBI | |
Badmus OO, Hillhouse SA, Anderson CD, Hinds TD and Stec DE: Molecular mechanisms of metabolic associated fatty liver disease (MAFLD): Functional analysis of lipid metabolism pathways. Clin Sci (Lond). 136:1347–1366. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang P, Wang W, Mao M, Gao R, Shi W, Li D, Calderone R, Sui B, Tian X and Meng X: Similarities and differences: A comparative review of the molecular mechanisms and effectors of NAFLD and AFLD. Front Physiol. 12:7102852021. View Article : Google Scholar : PubMed/NCBI | |
Chen D, Yan Y, Wang X, Li S, Liu Y, Yu D, He Y, Deng R, Liu Y, Xu M, et al: Chronic alcohol exposure promotes HCC stemness and metastasis through β-catenin/miR-22-3p/TET2 axis. Aging (Albany NY). 13:14433–14455. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Qin W, Huo J, Zhuo Q, Wang J and Wang L: MiR-22 modulates the expression of lipogenesis-related genes and promotes hepatic steatosis in vitro. FEBS Open Bio. 11:322–332. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hu Y, Liu HX, Jena PK, Sheng L, Ali MR and Wan YY: miR-22 inhibition reduces hepatic steatosis via FGF21 and FGFR1 induction. JHEP Rep. 2:1000932020. View Article : Google Scholar : PubMed/NCBI | |
Pouwels S, Sakran N, Graham Y, Leal A, Pintar T, Yang W, Kassir R, Singhal R, Mahawar K and Ramnarain D: Non-alcoholic fatty liver disease (NAFLD): A review of pathophysiology, clinical management and effects of weight loss. BMC Endocr Disord. 22:632022. View Article : Google Scholar : PubMed/NCBI | |
Liu Q, Li J, Zhang W, Xiao C, Zhang S, Nian C, Li J, Su D, Chen L, Zhao Q, et al: Glycogen accumulation and phase separation drives liver tumor initiation. Cell. 184:5559–5576.e19. 2021. View Article : Google Scholar : PubMed/NCBI | |
Agosti P, Sabbà C and Mazzocca A: Emerging metabolic risk factors in hepatocellular carcinoma and their influence on the liver microenvironment. Biochim Biophys Acta Mol Basis Dis. 1864:607–617. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hyun J, Han J, Lee C, Yoon M and Jung Y: Pathophysiological aspects of alcohol metabolism in the liver. Int J Mol Sci. 22:57172021. View Article : Google Scholar : PubMed/NCBI | |
Jeon S and Carr R: Alcohol effects on hepatic lipid metabolism. J Lipid Res. 61:470–479. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lu W, Li X and Luo Y: FGF21 in obesity and cancer: New insights. Cancer Lett. 499:5–13. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rodríguez-Agudo R, González-Recio I, Serrano-Maciá M, Bravo M, Petrov P, Blaya D, Herranz JM, Mercado-Gómez M, Rejano-Gordillo CM, Lachiondo-Ortega S, et al: Anti-miR-873-5p improves alcohol-related liver disease by enhancing hepatic deacetylation via SIRT1. JHEP Rep. 6:1009182023. View Article : Google Scholar : PubMed/NCBI | |
Iwagami Y, Zou J, Zhang H, Cao K, Ji C, Kim M and Huang CK: Alcohol-mediated miR-34a modulates hepatocyte growth and apoptosis. J Cell Mol Med. 22:3987–3995. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rinella ME, Neuschwander-Tetri BA, Siddiqui MS, Abdelmalek MF, Caldwell S, Barb D, Kleiner DE and Loomba R: AASLD practice guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology. 77:1797–1835. 2023. View Article : Google Scholar : PubMed/NCBI | |
No authors listed. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American association for the study of liver diseases. Clin Liver Dis (Hoboken). 11:812018. View Article : Google Scholar : PubMed/NCBI | |
Castano C, Novials A and Párrizas M: Exosomes from short-term high-fat or high-sucrose fed mice induce hepatic steatosis through different pathways. Cells. 12:1692022. View Article : Google Scholar : PubMed/NCBI | |
Thibonnier M and Esau C: Metabolic benefits of MicroRNA-22 inhibition. Nucleic Acid Ther. 30:104–116. 2020. View Article : Google Scholar : PubMed/NCBI | |
Thibonnier M, Esau C, Ghosh S, Wargent E and Stocker C: Metabolic and energetic benefits of microRNA-22 inhibition. BMJ Open Diabetes Res Care. 8:e0014782020. View Article : Google Scholar : PubMed/NCBI | |
Gjorgjieva M, Sobolewski C, Ay AS, Abegg D, Correia de Sousa M, Portius D, Berthou F, Fournier M, Maeder C, Rantakari P, et al: Genetic ablation of MiR-22 fosters diet-induced obesity and NAFLD development. J Pers Med. 10:1702020. View Article : Google Scholar : PubMed/NCBI | |
Younossi ZM, Golabi P, de Avila L, Paik JM, Srishord M, Fukui N, Qiu Y, Burns L, Afendy A and Nader F: The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. J Hepatol. 71:793–801. 2019. View Article : Google Scholar : PubMed/NCBI | |
Agbu P and Carthew RW: MicroRNA-mediated regulation of glucose and lipid metabolism. Nat Rev Mol Cell Biol. 22:425–438. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kaur K, Vig S, Srivastava R, Mishra A, Singh VP, Srivastava AK and Datta M: Elevated hepatic miR-22-3p expression impairs gluconeogenesis by silencing the Wnt-responsive transcription factor Tcf7. Diabetes. 64:3659–3669. 2015. View Article : Google Scholar : PubMed/NCBI | |
Petito G, Cioffi F, Silvestri E, De Matteis R, Lattanzi D, de Lange P, Lombardi A, Moreno M, Goglia F, Lanni A and Senese R: 3,5-Diiodo-L-thyronine (T2) administration affects visceral adipose tissue inflammatory state in rats receiving long-lasting high-fat diet. Front Endocrinol (Lausanne). 12:7031702021. View Article : Google Scholar : PubMed/NCBI | |
Silvestri E, Cioffi F, De Matteis R, Senese R, de Lange P, Coppola M, Salzano AM, Scaloni A, Ceccarelli M, Goglia F, et al: 3,5-Diiodo-L-thyronine affects structural and metabolic features of skeletal muscle mitochondria in high-fat-diet fed rats producing a co-adaptation to the glycolytic fiber phenotype. Front Physiol. 9:1942018. View Article : Google Scholar : PubMed/NCBI | |
Senese R, Cioffi F, Petito G, de Lange P, Russo A, Goglia F, Lanni A and Potenza N: miR-22-3p is involved in gluconeogenic pathway modulated by 3,5-diiodo-L-thyronine (T2). Sci Rep. 9:166452019. View Article : Google Scholar : PubMed/NCBI | |
Zhao T, Wang J, He A, Wang S, Chen Y, Lu J, Lv J, Li S, Wang J, Qian M, et al: Mebhydrolin ameliorates glucose homeostasis in type 2 diabetic mice by functioning as a selective FXR antagonist. Metabolism. 119:1547712021. View Article : Google Scholar : PubMed/NCBI | |
Cohen-Naftaly M and Friedman SL: Current status of novel antifibrotic therapies in patients with chronic liver disease. Therap Adv Gastroenterol. 4:391–417. 2011. View Article : Google Scholar : PubMed/NCBI | |
Elpek GÖ: Cellular and molecular mechanisms in the pathogenesis of liver fibrosis: An update. World J Gastroenterol. 20:7260–7276. 2014. View Article : Google Scholar : PubMed/NCBI | |
Higashi T, Friedman SL and Hoshida Y: Hepatic stellate cells as key target in liver fibrosis. Adv Drug Deliv Rev. 121:27–42. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ezhilarasan D: MicroRNA interplay between hepatic stellate cell quiescence and activation. Eur J Pharmacol. 885:1735072020. View Article : Google Scholar : PubMed/NCBI | |
Riaz F, Chen Q, Lu K, Osoro EK, Wu L, Feng L, Zhao R, Yang L, Zhou Y, He Y, et al: Inhibition of miR-188-5p alleviates hepatic fibrosis by significantly reducing the activation and proliferation of HSCs through PTEN/PI3K/AKT pathway. J Cell Mol Med. 25:4073–4087. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Zhu S, Chen SY, Wang JN, Sun LJ, Tao SM, Li XF, Li HD, Sun YY, Xu CH, et al: miR-301a-3p promotes hepatic stellate cells activation and liver fibrogenesis via regulating PTEN/PDGFR-β. Int Immunopharmacol. 110:1090342022. View Article : Google Scholar : PubMed/NCBI | |
Ju A, Shen Y and Yue A: Circ_0011232 contributes to hepatocellular carcinoma progression through miR-503-5p/AKT3 axis. Hepatol Res. 52:532–545. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zheng Y, Cai B, Li X, Li D and Yin G: MiR-125b-5p and miR-181b-5p inhibit keratinocyte proliferation in skin by targeting Akt3. Eur J Pharmacol. 862:1726592019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Wang F, Chen G, He R and Yang L: LncRNA MALAT1 promotes osteoarthritis by modulating miR-150-5p/AKT3 axis. Cell Biosci. 9:542019. View Article : Google Scholar : PubMed/NCBI | |
Abdullah AS, Sayed IETE, El-Torgoman AMA, Kalam A, Wageh S and Kamel MA: Green synthesis of silymarin-chitosan nanoparticles as a new nano formulation with enhanced anti-fibrotic effects against liver fibrosis. Int J Mol Sci. 23:54202022. View Article : Google Scholar : PubMed/NCBI | |
Abdullah AS, El Sayed IET, El-Torgoman AMA, Alghamdi NA, Ullah S, Wageh S and Kamel MA: Preparation and characterization of silymarin-conjugated gold nanoparticles with enhanced anti-fibrotic therapeutic effects against hepatic fibrosis in rats: Role of MicroRNAs as molecular targets. Biomedicines. 9:17672021. View Article : Google Scholar : PubMed/NCBI | |
Tsuchida T, Lee YA, Fujiwara N, Ybanez M, Allen B, Martins S, Fiel MI, Goossens N, Chou HI, Hoshida Y and Friedman SL: A simple diet- and chemical-induced murine NASH model with rapid progression of steatohepatitis, fibrosis and liver cancer. J Hepatol. 69:385–395. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ji D, Li B, Shao Q, Li F, Li Z and Chen G: MiR-22 suppresses BMP7 in the development of cirrhosis. Cell Physiol Biochem. 36:1026–1036. 2015. View Article : Google Scholar : PubMed/NCBI | |
Onakpoya IJ, Heneghan CJ and Aronson JK: Post-marketing withdrawal of 462 medicinal products because of adverse drug reactions: A systematic review of the world literature. BMC Med. 14:102016. View Article : Google Scholar : PubMed/NCBI | |
Li X, Tang J and Mao Y: Incidence and risk factors of drug-induced liver injury. Liver Int. 42:1999–2014. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kleiner DE: Drug-induced liver injury: The hepatic pathologist's approach. Gastroenterol Clin North Am. 46:273–296. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kleiner DE, Chalasani NP, Lee WM, Fontana RJ, Bonkovsky HL, Watkins PB, Hayashi PH, Davern TJ, Navarro V, Reddy R, et al: Hepatic histological findings in suspected drug-induced liver injury: Systematic evaluation and clinical associations. Hepatology. 59:661–670. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Wu W, Ou P, Wu M, Zeng F, Zhou B and Wu S: MiR-122-5p knockdown protects against APAP-mediated liver injury through up-regulating NDRG3. Mol Cell Biochem. 476:1257–1267. 2021. View Article : Google Scholar : PubMed/NCBI | |
Vliegenthart ADB, Berends C, Potter CMJ, Kersaudy-Kerhoas M and Dear JW: MicroRNA-122 can be measured in capillary blood which facilitates point-of-care testing for drug-induced liver injury. Br J Clin Pharmacol. 83:2027–2033. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Chen H, Hao J, Li Z, Hou T and Hao H: Characterization and functional prediction of the microRNAs differentially expressed in a mouse model of concanavalin A-induced autoimmune hepatitis. Int J Med Sci. 17:2312–2327. 2020. View Article : Google Scholar : PubMed/NCBI | |
López-Riera M, Conde I, Tolosa L, Zaragoza A, Castell JV, Gómez-Lechón MJ and Jover R: New microRNA biomarkers for drug-induced steatosis and their potential to predict the contribution of drugs to non-alcoholic fatty liver disease. Front Pharmacol. 8:32017. View Article : Google Scholar : PubMed/NCBI | |
Amacher DE and Chalasani N: Drug-induced hepatic steatosis. Semin Liver Dis. 34:205–214. 2014. View Article : Google Scholar : PubMed/NCBI | |
Allard J, Le Guillou D, Begriche K and Fromenty B: Drug-induced liver injury in obesity and nonalcoholic fatty liver disease. Adv Pharmacol. 85:75–107. 2019. View Article : Google Scholar : PubMed/NCBI |