Anticancer role of flubendazole: Effects and molecular mechanisms (Review)
- Authors:
- Xing Xing
- Zongning Zhou
- Hongwei Peng
- Shaoping Cheng
-
Affiliations: Department of Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China, Human Genetic Resources Preservation Center of Wuhan University, Wuhan, Hubei 430071, P.R. China - Published online on: September 20, 2024 https://doi.org/10.3892/ol.2024.14691
- Article Number: 558
-
Copyright: © Xing et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Čáňová K, Rozkydalová L and Rudolf E: Anthelmintic flubendazole and its potential use in anticancer therapy. Acta Medica (Hradec Kralove). 60:5–11. 2017. View Article : Google Scholar : PubMed/NCBI | |
Friedman PA and Platzer EG: Interaction of anthelmintic benzimidazoles with Ascaris suum embryonic tubulin. Biochim Biophys Acta. 630:271–278. 1980. View Article : Google Scholar : PubMed/NCBI | |
Lacey E: Mode of action of benzimidazoles. Parasitol Today. 6:112–115. 1990. View Article : Google Scholar : PubMed/NCBI | |
Venugopal S, Kaur B, Verma A, Wadhwa P, Magan M, Hudda S and Kakoty V: Recent advances of benzimidazole as anticancer agents. Chem Biol Drug Des. 102:357–376. 2023. View Article : Google Scholar : PubMed/NCBI | |
Michiels M, Hendriks R, Heykants J and van den Bossche H: The pharmacokinetics of mebendazole and flubendazole in animals and man. Arch Int Pharmacodyn Ther. 256:180–191. 1982.PubMed/NCBI | |
Bossche HV, Thienpont D and Janssens PG: Chemotherapy of Gastrointestinal Helminths. Springer; Berlin: pp. p7191985 | |
Nath J, Paul R, Ghosh SK, Paul J, Singha B and Debnath N: Drug repurposing and relabeling for cancer therapy: Emerging benzimidazole antihelminthics with potent anticancer effects. Life Sci. 258:1181892020. View Article : Google Scholar : PubMed/NCBI | |
Tweats DJ, Johnson GE, Scandale I, Whitwell J and Evans DB: Genotoxicity of flubendazole and its metabolites in vitro and the impact of a new formulation on in vivo aneugenicity. Mutagenesis. 31:309–321. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Bang J, Ryu B, Kim CY and Park JH: Flubendazole exposure disrupts neural development and function of zebrafish embryos (Danio rerio). Sci Total Environ. 898:1653762023. View Article : Google Scholar : PubMed/NCBI | |
Moreno L, Alvarez L, Mottier L, Virkel G, Bruni SS and Lanusse C: Integrated pharmacological assessment of flubendazole potential for use in sheep: Disposition kinetics, liver metabolism and parasite diffusion ability. J Vet Pharmacol Ther. 27:299–308. 2004. View Article : Google Scholar : PubMed/NCBI | |
Krízová V, Nobilis M, Prusková L, Chládek J, Szotáková B, Cvilink V, Skálová L and Lamka J: Pharmacokinetics of flubendazole and its metabolites in lambs and adult sheep (Ovis aries). J Vet Pharmacol Ther. 32:606–612. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Ding Y, Liu H, Sun M, Wang H and Wu D: Flubendazole plays an important anti-tumor role in different types of cancers. Int J Mol Sci. 23:5192022. View Article : Google Scholar : PubMed/NCBI | |
Spagnuolo PA, Hu J, Hurren R, Wang X, Gronda M, Sukhai MA, Di Meo A, Boss J, Ashali I, Beheshti Zavareh R, et al: The antihelmintic flubendazole inhibits microtubule function through a mechanism distinct from Vinca alkaloids and displays preclinical activity in leukemia and myeloma. Blood. 115:4824–4833. 2010. View Article : Google Scholar : PubMed/NCBI | |
Michaelis M, Agha B, Rothweiler F, Löschmann N, Voges Y, Mittelbronn M, Starzetz T, Harter PN, Abhari BA, Fulda S, et al: Identification of flubendazole as potential anti-neuroblastoma compound in a large cell line screen. Sci Rep. 5:82022015. View Article : Google Scholar : PubMed/NCBI | |
Son DS, Lee ES and Adunyah SE: The antitumor potentials of benzimidazole anthelmintics as repurposing drugs. Immune Netw. 20:e292020. View Article : Google Scholar : PubMed/NCBI | |
Schipper LJ, Zeverijn LJ, Garnett MJ and Voest EE: Can Drug repurposing accelerate precision oncology? Cancer Discov. 12:1634–1641. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hijazi MA, Gessner A and El-Najjar N: Repurposing of chronically used drugs in cancer therapy: A chance to grasp. Cancers (Basel). 15:31992023. View Article : Google Scholar : PubMed/NCBI | |
Kawczak P, Feszak I, Brzeziński P and Bączek T: Structure-activity relationships and therapeutic applications of retinoids in view of potential benefits from drug repurposing process. Biomedicines. 12:10592024. View Article : Google Scholar : PubMed/NCBI | |
Fletcher DA and Mullins RD: Cell mechanics and the cytoskeleton. Nature. 463:485–492. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gudimchuk NB and McIntosh JR: Regulation of microtubule dynamics, mechanics and function through the growing tip. Nat Rev Mol Cell Biol. 22:777–795. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jordan MA and Wilson L: Microtubules as a target for anticancer drugs. Nat Rev Cancer. 4:253–265. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kralova V, Hanušová V, Caltová K, Špaček P, Hochmalová M, Skálová L and Rudolf E: Flubendazole and mebendazole impair migration and epithelial to mesenchymal transition in oral cell lines. Chem Biol Interact. 293:124–132. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hou ZJ, Luo X, Zhang W, Peng F, Cui B, Wu SJ, Zheng FM, Xu J, Xu LZ, Long ZJ, et al: Flubendazole, FDA-approved anthelmintic, targets breast cancer stem-like cells. Oncotarget. 6:6326–6340. 2015. View Article : Google Scholar : PubMed/NCBI | |
Králová V, Hanušová V, Rudolf E, Čáňová K and Skálová L: Flubendazole induces mitotic catastrophe and senescence in colon cancer cells in vitro. J Pharm Pharmacol. 68:208–218. 2016. View Article : Google Scholar : PubMed/NCBI | |
Čáňová K, Rozkydalová L, Vokurková D and Rudolf E: Flubendazole induces mitotic catastrophe and apoptosis in melanoma cells. Toxicol In Vitro. 46:313–322. 2018. View Article : Google Scholar : PubMed/NCBI | |
Oh E, Kim YJ, An H, Sung D, Cho TM, Farrand L, Jang S, Seo JH and Kim JY: Flubendazole elicits anti-metastatic effects in triple-negative breast cancer via STAT3 inhibition. Int J Cancer. 143:1978–1993. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jamasbi E, Hamelian M, Hossain MA and Varmira K: The cell cycle, cancer development and therapy. Mol Biol Rep. 49:10875–10883. 2022. View Article : Google Scholar : PubMed/NCBI | |
Rieder CL and Cole R: Microtubule disassembly delays the G2-M transition in vertebrates. Curr Biol. 10:1067–1070. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kim YJ, Sung D, Oh E, Cho Y, Cho TM, Farrand L, Seo JH and Kim JY: Flubendazole overcomes trastuzumab resistance by targeting cancer stem-like properties and HER2 signaling in HER2-positive breast cancer. Cancer Lett. 412:118–130. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Zou L, Chen W, Yang T, Luo J, Wu K, Shu F, Tan X, Yang Y, Cen S, et al: Flubendazole, FDA-approved anthelmintic, elicits valid antitumor effects by targeting P53 and promoting ferroptosis in castration-resistant prostate cancer. Pharmacol Res. 164:1053052021. View Article : Google Scholar : PubMed/NCBI | |
Rudolf K and Rudolf E: An analysis of mitotic catastrophe induced cell responses in melanoma cells exposed to flubendazole. Toxicol In Vitro. 68:1049302020. View Article : Google Scholar : PubMed/NCBI | |
Králová V, Hanušová V, Staňková P, Knoppová K, Čáňová K and Skálová L: Antiproliferative effect of benzimidazole anthelmintics albendazole, ricobendazole, and flubendazole in intestinal cancer cell lines. Anticancer Drugs. 24:911–919. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Liu J, Zhang J, Wei Y and Li H: Flubendazole inhibits glioma proliferation by G2/M cell cycle arrest and pro-apoptosis. Cell Death Discov. 4:182018. View Article : Google Scholar | |
Ren LW, Li W, Zheng XJ, Liu JY, Yang YH, Li S, Zhang S, Fu WQ, Xiao B, Wang JH and Du GH: Benzimidazoles induce concurrent apoptosis and pyroptosis of human glioblastoma cells via arresting cell cycle. Acta Pharmacol Sin. 43:194–208. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jin W, Yu J, Su Y, Lin H, Liu T, Chen J, Ge C, Zhao F, Geng Q, Mao L, et al: Drug repurposing flubendazole to suppress tumorigenicity via PCSK9-dependent inhibition and potentiate lenvatinib therapy for hepatocellular carcinoma. Int J Biol Sci. 19:2270–2288. 2023. View Article : Google Scholar : PubMed/NCBI | |
Glick D, Barth S and Macleod KF: Autophagy: Cellular and molecular mechanisms. J Pathol. 221:3–12. 2010. View Article : Google Scholar : PubMed/NCBI | |
Debnath J, Gammoh N and Ryan KM: Autophagy and autophagy-related pathways in cancer. Nat Rev Mol Cell Biol. 24:560–575. 2023. View Article : Google Scholar : PubMed/NCBI | |
Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, Klionsky DJ, Ohsumi M and Ohsumi Y: A protein conjugation system essential for autophagy. Nature. 395:395–398. 1998. View Article : Google Scholar : PubMed/NCBI | |
Lin S, Yang L, Yao Y, Xu L, Xiang Y, Zhao H, Wang L, Zuo Z, Huang X and Zhao C: Flubendazole demonstrates valid antitumor effects by inhibiting STAT3 and activating autophagy. J Exp Clin Cancer Res. 38:2932019. View Article : Google Scholar : PubMed/NCBI | |
Xie X, Cai X, Tang Y, Jiang C, Zhou F, Yang L, Liu Z, Wang L, Zhao H, Zhao C and Huang X: Flubendazole elicits antitumor effects by inhibiting STAT3 and activating autophagy in non-small cell lung cancer. Front Cell Dev Biol. 9:6806002021. View Article : Google Scholar : PubMed/NCBI | |
Zhen Y, Zhao R, Wang M, Jiang X, Gao F, Fu L, Zhang L and Zhou XL: Flubendazole elicits anti-cancer effects via targeting EVA1A-modulated autophagy and apoptosis in triple-negative breast cancer. Theranostics. 10:8080–8097. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhen Y, Yuan Z, Zhang J, Chen Y, Fu Y, Liu Y, Fu L, Zhang L and Zhou XL: Flubendazole induces mitochondrial dysfunction and DRP1-mediated mitophagy by targeting EVA1A in breast cancer. Cell Death Dis. 13:3752022. View Article : Google Scholar : PubMed/NCBI | |
Carneiro BA and El-Deiry WS: Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol. 17:395–417. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Liu J, Lin X, Xiang A, Ye Q, Guo J, Rui T, Xu J and Hu S: Crosstalk between cancer-associated fibroblasts and regulated cell death in tumors: Insights into apoptosis, autophagy, ferroptosis, and pyroptosis. Cell Death Discov. 10:1892024. View Article : Google Scholar : PubMed/NCBI | |
Huang B, Yan X and Li Y: Cancer stem cell for tumor therapy. Cancers (Basel). 13:48142021. View Article : Google Scholar : PubMed/NCBI | |
Borlongan MC, Saha D and Wang H: Tumor microenvironment: A niche for cancer stem cell immunotherapy. Stem Cell Rev Rep. 20:3–24. 2024. View Article : Google Scholar : PubMed/NCBI | |
Conde I, Ribeiro AS and Paredes J: Breast cancer stem cell membrane biomarkers: Therapy targeting and clinical implications. Cells. 11:9342022. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Stockwell BR and Conrad M: Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Kang R, Kroemer G and Tang D: Broadening horizons: The role of ferroptosis in cancer. Nat Rev Clin Oncol. 18:280–296. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Guo Q, Zhou L and Xia X: Ferroptosis: A double-edged sword. Cell Death Discov. 10:2652024. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Acharya G, Elahy M, Xin H and Khachigian LM: The anthelmintic flubendazole blocks human melanoma growth and metastasis and suppresses programmed cell death protein-1 and myeloid-derived suppressor cell accumulation. Cancer Lett. 459:268–276. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lee H, Jeong AJ and Ye SK: Highlighted STAT3 as a potential drug target for cancer therapy. BMB Rep. 52:415–423. 2019. View Article : Google Scholar : PubMed/NCBI | |
Parri E, Kuusanmaki H, van Adrichem AJ, Kaustio M and Wennerberg K: Identification of novel regulators of STAT3 activity. PLoS One. 15:e02308192020. View Article : Google Scholar : PubMed/NCBI | |
Carpenter RL and Lo HW: STAT3 target genes relevant to human cancers. Cancers (Basel). 6:897–925. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tolomeo M and Cascio A: The multifaced Role of STAT3 in cancer and its implication for anticancer therapy. Int J Mol Sci. 22:6032021. View Article : Google Scholar : PubMed/NCBI | |
Zhang HF and Lai R: STAT3 in cancer-friend or foe? Cancers (Basel). 6:1408–1440. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yu H, Lin L, Zhang Z, Zhang H and Hu H: Targeting NF-κB pathway for the therapy of diseases: Mechanism and clinical study. Signal Transduct Target Ther. 5:2092020. View Article : Google Scholar : PubMed/NCBI | |
Taniguchi K and Karin M: NF-κB, inflammation, immunity and cancer: Coming of age. Nat Rev Immunol. 18:309–324. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mirzaei S, Saghari S, Bassiri F, Raesi R, Zarrabi A, Hushmandi K, Sethi G and Tergaonkar V: NF-κB as a regulator of cancer metastasis and therapy response: A focus on epithelial-mesenchymal transition. J Cell Physiol. 237:2770–2795. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hanušová V, Skálová L, Králová V and Matoušková P: The effect of flubendazole on adhesion and migration in SW480 and SW620 colon cancer cells. Anticancer Agents Med Chem. 18:837–846. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tao J, Zhao H, Xie X, Luo M, Gao Z, Sun H and Huang Z: The anthelmintic drug flubendazole induces cell apoptosis and inhibits NF-κB signaling in esophageal squamous cell carcinoma. Onco Targets Ther. 12:471–478. 2019. View Article : Google Scholar : PubMed/NCBI | |
Glaviano A, Foo ASC, Lam HY, Yap KCH, Jacot W, Jones RH, Eng H, Nair MG, Makvandi P, Geoerger B, et al: PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer. 22:1382023. View Article : Google Scholar : PubMed/NCBI | |
Sabbah DA, Hajjo R, Bardaweel SK and Zhong HA: Targeting the PI3K/AKT signaling pathway in anticancer research: A recent update on inhibitor design and clinical trials (2020–2023). Expert Opin Ther Pat. 34:141–158. 2024. View Article : Google Scholar : PubMed/NCBI | |
Cocco S, Leone A, Roca MS, Lombardi R, Piezzo M, Caputo R, Ciardiello C, Costantini S, Bruzzese F, Sisalli MJ, et al: Inhibition of autophagy by chloroquine prevents resistance to PI3K/AKT inhibitors and potentiates their antitumor effect in combination with paclitaxel in triple negative breast cancer models. J Transl Med. 20:2902022. View Article : Google Scholar : PubMed/NCBI | |
Kierans SJ and Taylor CT: Regulation of glycolysis by the hypoxia-inducible factor (HIF): Implications for cellular physiology. J Physiol. 599:23–37. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Liao M, Li Z, Ye J, Wu L, Mou Y, Fu L and Zhen Y: Flubendazole enhances the inhibitory effect of paclitaxel via HIF1α/PI3K/AKT signaling pathways in breast cancer. Int J Mol Sci. 24:151212023. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Wu B, Hossain MJ, Quagliata L, O'Meara C, Wilkins MR, Corley S and Khachigian LM: Flubendazole inhibits PD-1 and suppresses melanoma growth in immunocompetent mice. J Transl Med. 21:4672023. View Article : Google Scholar : PubMed/NCBI | |
Zhao H, Liu H, Yang Y and Wang H: The emerging role of EVA1A in different types of cancers. Int J Mol Sci. 23:66652022. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Su Z, Tavana O and Gu W: Understanding the complexity of p53 in a new era of tumor suppression. Cancer Cell. 42:946–967. 2024. View Article : Google Scholar : PubMed/NCBI | |
Tang Q, Chen Y, Li X, Long S, Shi Y, Yu Y, Wu W, Han L and Wang S: The role of PD-1/PD-L1 and application of immune-checkpoint inhibitors in human cancers. Front Immunol. 13:9644422022. View Article : Google Scholar : PubMed/NCBI | |
Yi M, Zheng X, Niu M, Zhu S, Ge H and Wu K: Combination strategies with PD-1/PD-L1 blockade: Current advances and future directions. Mol Cancer. 21:282022. View Article : Google Scholar : PubMed/NCBI | |
Wu Q, Wu W, Fu B, Shi L, Wang X and Kuca K: JNK signaling in cancer cell survival. Med Res Rev. 39:2082–2104. 2019. View Article : Google Scholar : PubMed/NCBI | |
Abdelrahman KS, Hassan HA, Abdel-Aziz SA, Marzouk AA, Narumi A, Konno H and Abdel-Aziz M: JNK signaling as a target for anticancer therapy. Pharmacol Rep. 73:405–434. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang G, Li Y, Zhao Y, Ouyang L, Chen Y, Liu B and Liu J: Targeting Atg4B for cancer therapy: Chemical mediators. Eur J Med Chem. 209:1129172021. View Article : Google Scholar : PubMed/NCBI | |
Park NY, Jo DS and Cho DH: Post-translational modifications of ATG4B in the regulation of autophagy. Cells. 11:13302022. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Guo M, Li J, Zheng Y, Zhang S, Xie T and Liu B: Systems biology-based discovery of a potential Atg4B agonist (Flubendazole) that induces autophagy in breast cancer. Mol Biosyst. 11:2860–2866. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jing J, Wu Z, Wang J, Luo G, Lin H, Fan Y and Zhou C: Hedgehog signaling in tissue homeostasis, cancers, and targeted therapies. Signal Transduct Target Ther. 8:3152023. View Article : Google Scholar : PubMed/NCBI | |
Jiang J: Hedgehog signaling mechanism and role in cancer. Semin Cancer Biol. 85:107–122. 2022. View Article : Google Scholar : PubMed/NCBI | |
Aslani S and Saad MI: Patient-derived xenograft models in cancer research: Methodology, applications, and future prospects. Methods Mol Biol. 2806:9–18. 2024. View Article : Google Scholar : PubMed/NCBI | |
Yan HHN, Chan AS, Lai FPL and Leung SY: Organoid cultures for cancer modeling. Cell Stem Cell. 30:917–937. 2023. View Article : Google Scholar : PubMed/NCBI | |
Huang W, Xu Z, Li S, Zhou J and Zhao B: Living biobanks of organoids: Valuable resource for translational research. Biopreserv Biobank. Jul 3–2024.(Epub ahead of print). doi: 10.1089/bio.2023.0142. View Article : Google Scholar | |
Cao J, Chan WC and Chow MSS: Use of conditional reprogramming cell, patient derived xenograft and organoid for drug screening for individualized prostate cancer therapy: Current and future perspectives (review). Int J Oncol. 60:522022. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Ju L, Cheng S, Wang G, Qian K, Liu X, Xiao Y and Wang X: Conditional reprogramming: Modeling urological cancer and translation to clinics. Clin Transl Med. 10:e952020. View Article : Google Scholar : PubMed/NCBI | |
McKellar QA, Galbraith EA and Baxter P: Oral absorption and bioavailability of fenbendazole in the dog and the effect of concurrent ingestion of food. J Vet Pharmacol Ther. 16:189–198. 1993. View Article : Google Scholar : PubMed/NCBI | |
Yukuyama MN, Guimaraes LMF, Segovia RS, Lameu C, de Araujo GLB, Löbenberg R, de Souza A, Henostroza MAB, Folchini BR, Peroni CM, et al: Malignant wound-the influence of oil components in flubendazole-loaded nanoemulsions in A549 lung cancer xenograft-bearing mice. J Drug Deliv Sci Technol. 78:1039632022. View Article : Google Scholar | |
de Souza Gonçalves D, Yukuyama MN, Saito Miyagi MY, Vieira Silva TJ, Lameu C, Bou-Chacra NA and de Araujo GLB: Revisiting flubendazole through nanocrystal technology: Statistical design, characterization and its potential inhibitory effect on xenografted lung tumor progression in mice. J Clust Sci. 34:261–272. 2023. View Article : Google Scholar | |
Yukuyama MN, Zuo J, Park C, Yousef M, Henostroza MAB, de Araujo GLB, Bou-Chacra NA and Löbenberg R: Biphasic dissolution combined with modified cylinder method-a new promising method for dissolution test in drug-loaded nanoemulsions. Int J Pharm. 632:1225542023. View Article : Google Scholar : PubMed/NCBI | |
Kosmidis C, Sapalidis K, Zarogoulidis P, Sardeli C, Koulouris C, Giannakidis D, Pavlidis E, Katsaounis A, Michalopoulos N, Mantalobas S, et al: Inhaled cisplatin for NSCLC: Facts and results. Int J Mol Sci. 20:20052019. View Article : Google Scholar : PubMed/NCBI | |
Miyagi MYS, de Oliveira Faria R, de Souza GB, Lameu C, Tagami T, Ozeki T, Bezzon VDN, Yukuyama MN, Bou-Chacra NA and de Araujo GLB: Optimizing adjuvant inhaled chemotherapy: Synergistic enhancement in paclitaxel cytotoxicity by flubendazole nanocrystals in a cycle model approach. Int J Pharm. 644:1233242023. View Article : Google Scholar : PubMed/NCBI | |
Holzbeierlein JM, Bixler BR, Buckley DI, Chang SS, Holmes R, James AC, Kirkby E, McKiernan JM and Schuckman AK: Diagnosis and treatment of non-muscle invasive bladder cancer: AUA/SUO guideline: 2024 Amendment. J Urol. 211:533–538. 2024. View Article : Google Scholar : PubMed/NCBI |