Preclinical evaluation of fenretinide against primary and metastatic intestinal type‑gastric cancer
- Authors:
- Natalia Ortiz
- Cecilia Díaz
-
Affiliations: Department of Biochemistry, School of Medicine, University of Costa Rica, San Pedro de Montes de Oca, San José 11501‑2060, Costa Rica - Published online on: September 25, 2024 https://doi.org/10.3892/ol.2024.14694
- Article Number: 561
This article is mentioned in:
Abstract
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Guggenheim DE and Shah MA: Gastric cancer epidemiology and risk factors. J Surg Oncol. 107:230–236. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lauren P: The two histological main types of gastric carcinoma: Diffuse and so-called intestinal-type carcinoma. An attempt at a histoclinical classification. Acta Pathol Microb Scand. 64:31–49. 1965. View Article : Google Scholar : PubMed/NCBI | |
Cisło M, Filip AA, Offerhaus GJA, Ciseł B, Rawicz-Pruszyński K, Skierucha M and Polkowski WP: Distinct molecular subtypes of gastric cancer: From Laurén to molecular pathology. Oncotarget. 9:19427–19442. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ma J, Shen H, Kapesa L and Zeng S: Lauren classification and individualized chemotherapy in gastric cancer. Oncol Lett. 11:2959–2964. 2016. View Article : Google Scholar : PubMed/NCBI | |
Silvestris N, Pantano F, Ibrahim T, Gamucci T, De Vita F, Di Palma T, Pedrazzoli P, Barni S, Bernardo A, Febbraro A, et al: Natural history of malignant bone disease in gastric cancer: Final results of a multicenter bone metastasis survey. PLoS One. 8:e744022013. View Article : Google Scholar : PubMed/NCBI | |
Riihimäki M, Hemminki A, Sundquist K, Sundquist J and Hemminki K: Metastatic spread in patients with gastric cancer. Oncotarget. 7:52307–52316. 2016. View Article : Google Scholar : PubMed/NCBI | |
Apicella M, Corso S and Giordano S: Targeted therapies for gastric cancer: Failures and hopes from clinical trials. Oncotarget. 8:57654–57669. 2017. View Article : Google Scholar : PubMed/NCBI | |
Drebber U, Baldus SE, Nolden B, Grass G, Bollschweiler E, Dienes HP, Hölscher AH and Mönig SP: The overexpression of c-met as a prognostic indicator for gastric carcinoma compared to p53 and p21 nuclear accumulation. Oncol Rep. 19:1477–1483. 2008.PubMed/NCBI | |
Morgan E, Arnold M, Camargo MC, Gini A, Kunzmann AT, Matsuda T, Meheus F, Verhoeven RHA, Vignat J, Laversanne M, et al: The current and future incidence and mortality of gastric cancer in 185 countries, 2020-40: A population-based modelling study. EClinicalMedicine. 47:1014042022. View Article : Google Scholar : PubMed/NCBI | |
Marin JJGG, Perez-Silva L, Macias RIRR, Asensio M, Peleteiro-Vigil A, Sanchez-Martin A, Cives-Losada C, Sanchon-Sanchez P, De Blas BS and Herraez E: Molecular bases of mechanisms accounting for drug resistance in gastric adenocarcinoma. Cancers (Basel). 12:21162020. View Article : Google Scholar : PubMed/NCBI | |
Okines A, Verheij M, Allum W, Cunningham D and Cervantes A; ESMO Guidelines Working Group, : Gastric cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 21 (Suppl 5):v50–v54. 2010. View Article : Google Scholar : PubMed/NCBI | |
Leite de Oliveira R, Deschoemaeker S, Henze AT, Debackere K, Finisguerra V, Takeda Y, Roncal C, Dettori D, Tack E, Jönsson Y, et al: Gene-targeting of Phd2 improves tumor response to chemotherapy and prevents side-toxicity. Cancer Cell. 22:263–277. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yamaguchi K, Boku N, Muro K, Yoshida K, Baba H, Tanaka S, Akamatsu A and Sano T: Real-world safety and effectiveness of nivolumab in Japanese patients with unresectable advanced or recurrent gastric/gastroesophageal junction cancer that has progressed after chemotherapy: A postmarketing surveillance study. Gastric Cancer. 25:245–253. 2022. View Article : Google Scholar : PubMed/NCBI | |
Araújo D, Ribeiro E, Amorim I and Vale N: Repurposed drugs in gastric cancer. Molecules. 28:3192023. View Article : Google Scholar | |
Shitara K, Bang YJ, Iwasa S, Sugimoto N, Ryu MH, Sakai D, Chung HC, Kawakami H, Yabusaki H, Lee J, et al: Trastuzumab deruxtecan in previously treated HER2-positive gastric cancer. N Engl J Med. 382:2419–2430. 2020. View Article : Google Scholar : PubMed/NCBI | |
Janjigian YY, Kawazoe A, Yañez P, Li N, Lonardi S, Kolesnik O, Barajas O, Bai Y, Shen L, Tang Y, et al: The KEYNOTE-811 trial of dual PD-1 and HER2 blockade in HER2-positive gastric cancer. Nature. 600:727–730. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shitara K, Rha SY, Wyrwicz LS, Oshima T, Karaseva N, Osipov M, Yasui H, Yabusaki H, Afanasyev S, Park YK, et al: Neoadjuvant and adjuvant pembrolizumab plus chemotherapy in locally advanced gastric or gastro-oesophageal cancer (KEYNOTE-585): An interim analysis of the multicentre, double-blind, randomised phase 3 study. Lancet Oncol. 25:212–224. 2024. View Article : Google Scholar : PubMed/NCBI | |
Masetti M, Al-Batran SE, Goetze TO, Thuss-Patience P, Knorrenschild JR, Goekkurt E, Folprecht G, Ettrich TJ, Lindig U, Luley KB, et al: Efficacy of ramucirumab combination chemotherapy as second-line treatment in patients with advanced adenocarcinoma of the stomach or gastroesophageal junction after exposure to checkpoint inhibitors and chemotherapy as first-line therapy. Int J Cancer. 154:2142–2150. 2024. View Article : Google Scholar : PubMed/NCBI | |
Guven DC, Sahin TK, Erul E, Rizzo A, Ricci AD, Aksoy S and Yalcin S: The association between albumin levels and survival in patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis. Front Mol Biosci. 9:10391212022. View Article : Google Scholar : PubMed/NCBI | |
Sahin TK, Rizzo A, Aksoy S and Guven DC: prognostic significance of the royal marsden hospital (RMH) score in patients with cancer: A systematic review and meta-analysis. Cancers (Basel). 16:18352024. View Article : Google Scholar : PubMed/NCBI | |
Dall'Olio FG, Rizzo A, Mollica V, Massucci M, Maggio I and Massari F: Immortal time bias in the association between toxicity and response for immune checkpoint inhibitors: A meta-analysis. Immunotherapy. 13:257–270. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rizzo A, Mollica V, Tateo V, Tassinari E, Marchetti A, Rosellini M, De Luca R, Santoni M and Massari F: Hypertransaminasemia in cancer patients receiving immunotherapy and immune-based combinations: The MOUSEION-05 study. Cancer Immunol Immunother. 72:1381–1394. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ricci AD, Rizzo A and Brandi G: DNA damage response alterations in gastric cancer: Knocking down a new wall. Future Oncol. 17:865–868. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chung HC, Bang YJ, Fuchs CS, Qin SK, Satoh T, Shitara K, Tabernero J, Van Cutsem E, Alsina M, Cao ZA, et al: First-line pembrolizumab/placebo plus trastuzumab and chemotherapy in HER2-positive advanced gastric cancer: KEYNOTE-811. Future Oncol. 17:491–501. 2021. View Article : Google Scholar : PubMed/NCBI | |
Boku N, Satoh T, Ryu MH, Chao Y, Kato K, Chung HC, Chen JS, Muro K, Kang WK, Yeh KH, et al: Nivolumab in previously treated advanced gastric cancer (ATTRACTION-2): 3-year update and outcome of treatment beyond progression with nivolumab. Gastric Cancer. 24:946–958. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jabbar N, Khayyam N, Arshad U, Maqsood S, Hamid SA and Mansoor N: An outcome analysis of childhood acute promyelocytic leukemia treated with ATRA and arsenic trioxide, and limited dose anthracycline. Indian J Hematol Blood Transfus. 37:569–575. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kutny MA, Alonzo TA, Abla O, Rajpurkar M, Gerbing RB, Wang YC, Hirsch BA, Raimondi S, Kahwash S, Hardy KK, et al: Assessment of arsenic trioxide and all-trans retinoic acid for the treatment of pediatric acute promyelocytic leukemia: A report from the Children's oncology group AAML1331 trial. JAMA Oncol. 8:79–87. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ramchatesingh B, Villarreal AM, Arcuri D, Lagacé F, Setah SA, Touma F, Al-Badarin F and Litvinov IV: The use of retinoids for the prevention and treatment of skin cancers: An updated review. Int J Mol Sci. 23:126222022. View Article : Google Scholar : PubMed/NCBI | |
Giuli MV, Hanieh PN, Giuliani E, Rinaldi F, Marianecci C, Screpanti I, Checquolo S and Carafa M: Current trends in ATRA delivery for cancer therapy. Pharmaceutics. 12:7072020. View Article : Google Scholar : PubMed/NCBI | |
Ferreira R, Napoli J, Enver T, Bernardino L and Ferreira L: Advances and challenges in retinoid delivery systems in regenerative and therapeutic medicine. Nat Commun. 11:42652020. View Article : Google Scholar : PubMed/NCBI | |
Veronesi U, Mariani L, Decensi A, Formelli F, Camerini T, Miceli R, Di Mauro MG, Costa A, Marubini E, Sporn MB and De Palo G: Fifteen-year results of a randomized phase III trial of fenretinide to prevent second breast cancer. Ann Oncol. 17:1065–1071. 2006. View Article : Google Scholar : PubMed/NCBI | |
Xie H, Zhu F, Huang Z, Lee MH, Kim DJ, Li X, Lim DY, Jung SK, Kang S, Li H, et al: Identification of mammalian target of rapamycin as a direct target of fenretinide both in vitro and in vivo. Carcinogenesis. 33:1814–1821. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mittal N, Malpani S, Dyson M, Ono M, Coon JS, Kim JJ, Schink JC, Bulun SE and Pavone ME: Fenretinide: A novel treatment for endometrial cancer. PLoS One. 9:e1104102014. View Article : Google Scholar : PubMed/NCBI | |
Cooper JP, Reynolds CP, Cho H and Kang MH: Clinical development of fenretinide as an antineoplastic drug: Pharmacology perspectives. Exp Biol Med (Maywood). 242:1178–1184. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hail N, Kim HJ and Lotan R: Mechanisms of fenretinide-induced apoptosis. Apoptosis. 11:1677–1694. 2006. View Article : Google Scholar : PubMed/NCBI | |
Corazzari M, Lovat PE, Armstrong JL, Fimia GM, Hill DS, Birch-Machin M, Redfern CP and Piacentini M: Targeting homeostatic mechanisms of endoplasmic reticulum stress to increase susceptibility of cancer cells to fenretinide-induced apoptosis: The role of stress proteins ERdj5 and ERp57. Br J Cancer. 96:1062–1071. 2007. View Article : Google Scholar : PubMed/NCBI | |
Fazi B, Bursch W, Fimia GM, Nardacci R, Piacentini M, Di Sano F and Piredda L: Fenretinide induces autophagic cell death in caspase-defective breast cancer cells. Autophagy. 4:435–441. 2008. View Article : Google Scholar : PubMed/NCBI | |
Garaventa A, Luksch R, Lo Piccolo MS, Cavadini E, Montaldo PG, Pizzitola MR, Boni L, Ponzoni M, Decensi A, De Bernardi B, et al: Phase I trial and pharmacokinetics of fenretinide in children with neuroblastoma. Clin Cancer Res. 9:2032–2039. 2003.PubMed/NCBI | |
Sabichi AL, Lerner SP, Atkinson EN, Grossman HB, Caraway NP, Dinney CP, Penson DF, Matin S, Kamat A, Pisters LL, et al: Phase III prevention trial of fenretinide in patients with resected non-muscle-invasive bladder cancer. Clin Cancer Res. 14:224–229. 2008. View Article : Google Scholar : PubMed/NCBI | |
Schneider BJ, Worden FP, Gadgeel SM, Parchment RE, Hodges CM, Zwiebel J, Dunn RL, Wozniak AJ, Kraut MJ and Kalemkerian GP: Phase II trial of fenretinide (NSC 374551) in patients with recurrent small cell lung cancer. Invest New Drugs. 27:571–578. 2009. View Article : Google Scholar : PubMed/NCBI | |
Moore MM, Stockler M, Lim R, Mok TSK, Millward M and Boyer MJ: A phase II study of fenretinide in patients with hormone refractory prostate cancer: A trial of the cancer therapeutics research group. Cancer Chemother Pharmacol. 66:845–850. 2010. View Article : Google Scholar : PubMed/NCBI | |
Villabanca JG, London WB, Naranjo A, McGrady P, Ames MM, Reid JM, McGovern RM, Buhrow SA, Jackson H, Stranzinger E, et al: Phase II study of oral capsular 4-hydroxyphenylretinamide (4-HPR/Fenretinide) in pediatric patients with refractory or recurrent neuroblastoma: A report from the Children's oncology group. Clin Cancer Res. 17:6858–6866. 2011. View Article : Google Scholar : PubMed/NCBI | |
Aristarco V, Serrano D, Maisonneuve P, Guerrieri-Gonzaga A, Lazzeroni M, Feroce I, Macis D, Cavadini E, Albertazzi E, Jemos C, et al: Fenretinide in young women at genetic or familial risk of breast cancer: A placebo-controlled biomarker trial. Cancer Prev Res (Phila). 17:255–263. 2024. View Article : Google Scholar : PubMed/NCBI | |
Orienti I, Salvati V, Sette G, Zucchetti M, Bongiorno-Borbone L, Peschiaroli A, Zolla L, Francescangeli F, Ferrari M, Matteo C, et al: A novel oral micellar fenretinide formulation with enhanced bioavailability and antitumour activity against multiple tumours from cancer stem cells. J Exp Clin Cancer Res. 38:3732019. View Article : Google Scholar : PubMed/NCBI | |
Matteo C, Orienti I, Eramo A, Zeuner A, Ferrari M, Passoni A, Bagnati R, Ponzo M, Bello E, Zucchetti M and Frapolli R: Validated LC-MS/MS assay for the quantitative determination of fenretinide in plasma and tumor and its application in a pharmacokinetic study in mice of a novel oral nanoformulation of fenretinide. Pharmaceutics. 16:3872024. View Article : Google Scholar : PubMed/NCBI | |
Barranco SC, Townsend CM, Casartelli C, Macik BG, Burger NL, Boerwinkle WR and Gourley WK: Establishment and characterization of an in vitro model system for human adenocarcinoma of the stomach. Cancer Res. 43:1703–1709. 1983.PubMed/NCBI | |
Park JG, Frucht H, LaRocca RV, Bliss DP, Kurita Y, Chen TR, Henslee JG, Trepel JB, Jensen RT and Johnson BE: Characteristics of cell lines established from human gastric carcinoma. Cancer Res. 50:2773–2780. 1990.PubMed/NCBI | |
Chou TC: Drug combination studies and their synergy quantification using the chou-talalay method. Cancer Res. 70:440–446. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ortiz N, Delgado-carazo JC and Díaz C: Importance of mevalonate pathway lipids on the growth and survival of primary and metastatic gastric carcinoma cells. Clin Exp Gastroenterol. 14:217–228. 2021. View Article : Google Scholar : PubMed/NCBI | |
Main KA, Mikelis CM and Doçi CL: In vitro wound healing assays to investigate epidermal migration. Methods Mol Biol. 2109:147–154. 2020. View Article : Google Scholar : PubMed/NCBI | |
Trump DL, Smith DC, Stiff D, Adedoyin A, Day R, Bahnson RR, Hofacker J and Branch RA: A phase II trial of all-trans-retinoic acid in hormone-refractory prostate cancer: A clinical trial with detailed pharmacokinetic analysis. Cancer Chemother Pharmacol. 39:349–356. 1997. View Article : Google Scholar : PubMed/NCBI | |
Adan A, Kiraz Y and Baran Y: Cell proliferation and cytotoxicity assays. Curr Pharm Biotechnol. 17:1213–1221. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ghasemi M, Turnbull T, Sebastian S and Kempson I: The mtt assay: Utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. Int J Mol Sci. 22:128272021. View Article : Google Scholar : PubMed/NCBI | |
Vichai V and Kirtikara K: Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc. 1:1112–1116. 2006. View Article : Google Scholar : PubMed/NCBI | |
Koay DC, Zerillo C, Narayan M, Harris LN and Digiovanna MP: Anti-tumor effects of retinoids combined with trastuzumab or tamoxifen in breast cancer cells: Induction of apoptosis by retinoid/trastuzumab combinations. Breast Cancer Res. 12:R622010. View Article : Google Scholar : PubMed/NCBI | |
Lordick F, Carneiro F, Cascinu S, Fleitas T, Haustermans K, Piessen G, Vogel A and Smyth EC; ESMO Guidelines Committee. Electronic address, : simpleclinicalguidelines@esmo.org: Gastric cancer: ESMO clinical practice guideline for diagnosis, treatment and follow-up. Ann Oncol. 33:1005–1020. 2022. View Article : Google Scholar : PubMed/NCBI | |
Raza MH, Siraj S, Arshad A, Waheed U, Aldakheel F, Alduraywish S and Arshad M: ROS-modulated therapeutic approaches in cancer treatment. J Cancer Res Clin Oncol. 143:1789–1809. 2017. View Article : Google Scholar : PubMed/NCBI | |
Parveen SM, Reddy KR and Ummanni R: Dimethylarginine Dimethylaminohydrolase-1 expression is increased under tBHP-induced oxidative stress regulates nitric oxide production in PCa cells attenuates mitochondrial ROS-mediated apoptosis. Nitric Oxide. 138–139. 70–84. 2023. | |
Xu C and Fan J: Links between autophagy and lipid droplet dynamics. J Exp Bot. 73:2848–2858. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Chen CY, Li J, Cheng JX, Jang M and Kim KH: In vitro exploration of ACAT contributions to lipid droplet formation during adipogenesis. J Lipid Res. 59:820–829. 2018. View Article : Google Scholar : PubMed/NCBI | |
Seo JH, Jeong ES and Choi YK: Therapeutic effects of lentivirus-mediated shRNA targeting of cyclin D1 in human gastric cancer. BMC Cancer. 14:1752014. View Article : Google Scholar : PubMed/NCBI | |
Park JH, Seo JH, Jeon HY, Seo SM, Lee HK, Park J, Kim JY and Choi YK: Lentivirus-mediated VEGF knockdown suppresses gastric cancer cell proliferation and tumor growth in vitro and in vivo lentivirus-mediated VEGF knockdown suppresses gastric cancer cell proliferation and tumor growth in vitro and in vivo. Onco Targets Ther. 13:1331–1341. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xia P, Liang J, Jin D and Jin Z: Reversine inhibits proliferation, invasion and migration and induces cell apoptosis in gastric cancer cells by downregulating TTK. Exp Ther Med. 22:9292021. View Article : Google Scholar : PubMed/NCBI | |
Basque JRÂ, Chénard M, Chailler P and Ménard D: Gastric cancer cell lines as models to study human digestive functions. J Cell Biochem. 81:241–251. 2001. View Article : Google Scholar : PubMed/NCBI | |
Patel TH and Cecchini M: Targeted therapies in advanced gastric cancer. Curr Treat Options Oncol. 21:702020. View Article : Google Scholar : PubMed/NCBI | |
Katuri V, Tang Y, Marshall B, Rashid A, Jogunoori W, Volpe EA, Sidawy AN, Evans S, Blay J, Gallicano GI, et al: Inactivation of ELF/TGF-b signaling in human gastrointestinal cancer. Oncogene. 24:8012–8024. 2005. View Article : Google Scholar : PubMed/NCBI | |
Jang M, Koh I, Lee SJ, Cheong JH and Kim P: Droplet-based microtumor model to assess cell-ECM interactions and drug resistance of gastric cancer cells. Sci Rep. 7:415412017. View Article : Google Scholar : PubMed/NCBI | |
Wang YG, Xu L, Jia RR, Wu Q, Wang T, Wei J, Ma JL, Shi M and Li ZS: DDR2 induces gastric cancer cell activities via activating mTORC2 signaling and is associated with clinicopathological characteristics of gastric cancer. Dig Dis Sci. 61:2272–2283. 2016. View Article : Google Scholar : PubMed/NCBI | |
Espelin CW, Leonard SC, Geretti E, Wickham TJ and Hendriks BS: Dual HER2 targeting with trastuzumab and demonstrates synergistic antitumor activity in breast and gastric cancer. Cancer Res. 76:1517–1527. 2016. View Article : Google Scholar : PubMed/NCBI | |
Simeone A, Broemeling L, Rosenblum J and Tari AM: HER2/neu reduces the apoptotic effects of N-(4-hydroxyphenyl)retinamide (4-HPR) in breast cancer cells by decreasing nitric oxide production. Onocogene. 22:6739–6747. 2003. View Article : Google Scholar | |
Guarrera L, Kurosaki M, Garattini SK, Gianni M, Fasola G, Rossit L, Prisciandaro M, Di Bartolomeo M, Bolis M, Rizzo P, et al: Anti-tumor activity of all-trans retinoic acid in gastric-cancer: Gene-networks and molecular mechanisms. J Exp Clin Cancer Res. 42:2982023. View Article : Google Scholar : PubMed/NCBI | |
Alfei S and Zuccari G: Attempts to improve lipophilic drugs' solubility and bioavailability: A focus on fenretinide. Pharmaceutics. 16:5792024. View Article : Google Scholar : PubMed/NCBI | |
Liu G, Wu M, Levi G and Ferrari N: Inhibition of cancer cell growth by all-trans retinoic acid and its analog N-(4-hydroxyphenyl) retinamide: A possible mechanism of action via regulation of retinoid receptors expression. Int J Cancer. 78:248–254. 1998. View Article : Google Scholar : PubMed/NCBI | |
Lin SR, Chang CH, Hsu CF, Tsai MJ, Cheng H, Leong MK, Sung PJ, Chen JC and Weng CF: Natural compounds as potential adjuvants to cancer therapy: Preclinical evidence. Br J Pharmacol. 177:1409–1423. 2020. View Article : Google Scholar : PubMed/NCBI | |
Dasari S, Njiki S, Mbemi A, Yedjou CG and Tchounwou PB: Pharmacological effects of cisplatin combination with natural products in cancer chemotherapy. Int J Mol Sci. 23:15322022. View Article : Google Scholar : PubMed/NCBI | |
Mohrbacher AM, Yang AS, Groshen S, Kummar S, Martin E, Kang MH, Tsao-Wei D, Reynolds CP, Newman EM and Maurer BJ: Phase I study of fenretinide deliverded intravenously in patients with relapsed or refractory hematologic malignancies: A California cancer consortium trial. Clin Cancer Res. 23:4550–4555. 2017. View Article : Google Scholar : PubMed/NCBI | |
Orienti I, Francescangeli F, De Angelis ML, Fecchi K, Bongiorno-Borbone L, Signore M, Peschiaroli A, Boe A, Bruselles A, Costantino A, et al: A new bioavailable fenretinide formulation with antiproliferative, antimetabolic, and cytotoxic effects on solid tumors. Cell Death Dis. 10:5292019. View Article : Google Scholar : PubMed/NCBI | |
Bensa V, Calarco E, Giusto E, Perri P, Corrias MV, Ponzoni M, Brignole C and Pastorino F: Retinoids delivery systems in cancer: Liposomal fenretinide for neuroectodermal-derived tumors. Pharmaceuticals (Basel). 14:8542021. View Article : Google Scholar : PubMed/NCBI | |
Thomas JS, El-khoueiry AB, Maurer BJ, Groshen S, Jacek K, Cobos E, Gandara DR, Lenz HJ, Kang MH, Reynolds CP and Newman EM: A phase I study of intravenous fenretinide (4-HPR) for patients with malignant solid tumors. Cancer Chemother Pharmacol. 87:525–532. 2022. View Article : Google Scholar : PubMed/NCBI | |
Brack E, Wachtel M, Wolf A, Kaech A, Ziegler U and Schäfer BW: Fenretinide induces a new form of dynamin-dependent cell death in pediatric sarcoma. Cell Death Differ. 27:2500–2516. 2020. View Article : Google Scholar : PubMed/NCBI | |
Darwiche N, Abou-Lteif G and Bazarbachi A: Reactive oxygen species mediate N-(4-hydroxyphenyl)retinamide-induced cell death in malignant T cells and are inhibited by the HTLV–I oncoprotein tax. Leukemia. 21:261–269. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Maurer BJ, Liu YY, Wang E, Allegood JC, Kelly S, Symolon H, Liu Y, Merrill AH Jr, Gouazé-Andersson V, et al: N-(4-Hydroxyphenyl)retinamide increases dihydroceramide and synergizes with dimethylsphingosine to enhance cancer cell killing. Mol Cancer Ther. 7:2967–2976. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lai WL and Wong NS: The PERK/eIF2 alpha signaling pathway of unfolded protein response is essential for N-(4-hydroxyphenyl)retinamide (4HPR)-induced cytotoxicity in cancer cells. Exp Cell Res. 314:1667–1682. 2008. View Article : Google Scholar : PubMed/NCBI | |
Apraiz A, Idkowiak-baldys J, Nieto-rementería N, Boyano MD, Hannun YA and Asumendi A: Dihydroceramide accumulation and reactive oxygen species are distinct and nonessential events in 4-HPR-mediated leukemia cell death. Biochem Cell Biol. 90:209–223. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kraveka JM, Li L, Szulc ZM, Bielawski J, Ogretmen B, Hannun YA, Obeid LM and Bielawska A: Involvement of dihydroceramide desaturase in cell cycle progression in human neuroblastoma cells. J Biol Chem. 282:16718–16728. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lim J and Murthy A: Targeting autophagy to treat cancer: Challenges and opportunities. Front Pharmacol. 11:5903442020. View Article : Google Scholar : PubMed/NCBI | |
Nguyen TB, Louie SM, Daniele JR, Tran Q, Dillin A, Zoncu R, Nomura DK and Olzmann JA: DGAT1-dependent lipid droplet biogenesis protects mitochondrial function during starvation-induced autophagy. Dev Cell. 42:9–21. 2017. View Article : Google Scholar : PubMed/NCBI | |
Martinez-Lopez N and Singh R: Autophagy and lipid droplets in the liver. Ann Rev Nutr. 35:215–237. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bouriez D, Giraud J, Gronnier C and Varon C: Efficiency of all-trans retinoic acid on gastric cancer: A narrative literature review. Int J Mol Sci. 19:33882018. View Article : Google Scholar : PubMed/NCBI | |
Yücel EI and Sahin M: Fenretinide reduces angiogenesis by downregulating CDH5, FOXM1 and eNOS genes and suppressing microRNA-10b. Mol Biol Rep. 47:1649–1658. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zeng J, Zhang H, Tan Y, Sun C, Liang Y, Yu J and Zou H: Aggregation of lipid rafts activates c-met and c-Src in non-small cell lung cancer cells. BMC Cancer. 18:6112018. View Article : Google Scholar : PubMed/NCBI | |
Sogno I, Venè R, Ferrari N, De Censi A, Imperatori A, Noonan DM, Tosetti F and Albini A: Angioprevention with fenretinide: Targeting angiogenesis in prevention and therapeutic strategies. Crit Rev Oncol Hematol. 75:2–14. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mayer B, Klement G, Kaneko M, Man S, Jothy S, Rak J and Kerbel RS: Multicellular gastric cancer spheroids recapitulate growth pattern and differentiation phenotype of human gastric carcinomas. Gastroenterology. 121:839–852. 2001. View Article : Google Scholar : PubMed/NCBI | |
Carl-McGrath S, Ebert MPA, Lendeckel U and Röcken C: Expression of the local angiotensin II system in gastric cancer may facilitate lymphatic invasion and nodal spread. Cancer Biol Ther. 6:1218–1226. 2007. View Article : Google Scholar : PubMed/NCBI | |
Takaishi S, Okumura T, Tu S, Wang SSW, Shibata W, Vigneshwaran R, Gordon SA, Shimada Y and Wang TC: Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells. 27:1006–1020. 2009. View Article : Google Scholar : PubMed/NCBI |