Therapeutic efficacy of ferroptosis in the treatment of colorectal cancer (Review)
- Authors:
- Zhao Guo
- Haoyan Zhuang
- Xuewen Shi
-
Affiliations: First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China, Department of Anorectal, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China - Published online on: September 26, 2024 https://doi.org/10.3892/ol.2024.14697
- Article Number: 563
-
Copyright: © Guo et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Favoriti P, Carbone G, Greco M, Pirozzi F, Pirozzi RE and Corcione F: Worldwide burden of colorectal cancer: A review. Updates Surg. 68:7–11. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bouvard V, Loomis D, Guyton KZ, Grosse Y, Ghissassi FE, Benbrahim-Tallaa L, Guha N, Mattock H and Straif K; International Agency for Research on Cancer Monograph Working Group, : Carcinogenicity of consumption of red and processed meat. Lancet Oncol. 16:1599–1600. 2015. View Article : Google Scholar : PubMed/NCBI | |
Johnson CH, Dejea CM, Edler D, Hoang LT, Santidrian AF, Felding BH, Ivanisevic J, Cho K, Wick EC, Hechenbleikner EM, et al: Metabolism links bacterial biofilms and colon carcinogenesis. Cell Metab. 21:891–897. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dejea CM, Wick EC, Hechenbleikner EM, White JR, Mark Welch JL, Rossetti BJ, Peterson SN, Snesrud EC, Borisy GG, Lazarev M, et al: Microbiota organization is a distinct feature of proximal colorectal cancers. Proc Natl Acad Sci USA. 111:18321–18326. 2014. View Article : Google Scholar : PubMed/NCBI | |
Benson AB, Venook AP, Al-Hawary MM, Cederquist L, Chen YJ, Ciombor KK, Cohen S, Cooper HS, Deming D, Engstrom PF, et al: NCCN guidelines insights: Colon cancer, version 2.2018. J Natl Compr Canc Netw. 16:359–369. 2018. View Article : Google Scholar : PubMed/NCBI | |
Guo J, Xu B, Han Q, Zhou H, Xia Y, Gong C, Dai X, Li Z and Wu G: Ferroptosis: A novel Anti-tumor action for cisplatin. Cancer Res Treat. 50:445–460. 2018. View Article : Google Scholar : PubMed/NCBI | |
Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, et al: Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 171:273–285. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xu S, He Y, Lin L, Chen P, Chen M and Zhang S: The emerging role of ferroptosis in intestinal disease. Cell Death Dis. 12:2892021. View Article : Google Scholar : PubMed/NCBI | |
Yagoda N, von Rechenberg M, Zaganjor E, Bauer AJ, Yang WS, Fridman DJ, Wolpaw AJ, Smukste I, Peltier JM, Boniface JJ, et al: RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature. 447:865–869. 2007. View Article : Google Scholar | |
Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, Sun B and Wang G: Ferroptosis: Past, present and future. Cell Death Dis. 11:882020. View Article : Google Scholar : PubMed/NCBI | |
Ketelut-Carneiro N and Fitzgerald KA: Apoptosis, pyroptosis, and Necroptosis-oh my! The many ways a cell can die. J Mol Biol. 434:1673782022. View Article : Google Scholar : PubMed/NCBI | |
Aglietti RA and Dueber EC: Recent insights into the molecular mechanisms underlying pyroptosis and gasdermin family functions. Trends Immunol. 38:261–271. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fang Y, Tian S, Pan Y, Li W, Wang Q, Tang Y, Yu T, Wu X, Shi Y, Ma P and Shu Y: Pyroptosis: A new frontier in cancer. Biomed Pharmacother. 121:1095952020. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H and Lieberman J: Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 535:153–158. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Wang H, Wang Z, He S, Chen S, Liao D, Wang L, Yan J, Liu W, Lei X and Wang X: Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell. 148:213–227. 2012. View Article : Google Scholar : PubMed/NCBI | |
Negroni A, Colantoni E, Cucchiara S and Stronati L: Necroptosis in intestinal inflammation and cancer: New concepts and therapeutic perspectives. Biomolecules. 10:14312020. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Yao S, Yang H, Liu S and Wang Y: Autophagy: Regulator of cell death. Cell Death Dis. 14:6482023. View Article : Google Scholar : PubMed/NCBI | |
Guiney SJ, Adlard PA, Bush AI, Finkelstein DI and Ayton S: Ferroptosis and cell death mechanisms in Parkinson's disease. Neurochem Int. 104:34–48. 2017. View Article : Google Scholar : PubMed/NCBI | |
Do Van B, Gouel F, Jonneaux A, Timmerman K, Gelé P, Pétrault M, Bastide M, Laloux C, Moreau C, Bordet R, et al: Ferroptosis, a newly characterized form of cell death in Parkinson's disease that is regulated by PKC. Neurobiol Dis. 94:169–178. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yan N and Zhang J: Iron metabolism, ferroptosis, and the links with Alzheimer's disease. Front Neurosci. 13:14432020. View Article : Google Scholar : PubMed/NCBI | |
Cong L, Dong X, Wang Y, Deng Y, Li B and Dai R: On the role of synthesized hydroxylated chalcones as dual functional amyloid-β aggregation and ferroptosis inhibitors for potential treatment of Alzheimer's disease. Eur J Med Chem. 166:11–21. 2019. View Article : Google Scholar : PubMed/NCBI | |
Deng G, Li Y, Ma S, Gao Z, Zeng T, Chen L, Ye H, Yang M, Shi H, Yao X, et al: Caveolin-1 dictates ferroptosis in the execution of acute immune-mediated hepatic damage by attenuating nitrogen stress. Free Radic Biol Med. 148:151–161. 2020. View Article : Google Scholar : PubMed/NCBI | |
Park SJ, Cho SS, Kim KM, Yang JH, Kim JH, Jeong EH, Yang JW, Han CY, Ku SK, Cho IJ and Ki SH: Protective effect of sestrin2 against iron overload and ferroptosis-induced liver injury. Toxicol Appl Pharmacol. 379:1146652019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Wu Y, Yuan S, Zhang P, Zhang J, Li H, Li X, Shen H, Wang Z and Chen G: Glutathione peroxidase 4 participates in secondary brain injury through mediating ferroptosis in a rat model of intracerebral hemorrhage. Brain Res. 1701:112–125. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kenny EM, Fidan E, Yang Q, Anthonymuthu TS, New LA, Meyer EA, Wang H, Kochanek PM, Dixon CE, Kagan VE and Bayir H: Ferroptosis contributes to neuronal death and functional outcome after traumatic brain injury. Crit Care Med. 47:410–418. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yao X, Zhang Y, Hao J, Duan HQ, Zhao CX, Sun C, Li B, Fan BY, Wang X, Li WX, et al: Deferoxamine promotes recovery of traumatic spinal cord injury by inhibiting ferroptosis. Neural Regen Res. 14:5322019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Sun C, Zhao C, Hao J, Zhang Y, Fan B, Li B, Duan H, Liu C, Kong X, et al: Ferroptosis inhibitor SRS 16–86 attenuates ferroptosis and promotes functional recovery in contusion spinal cord injury. Brain Res. 1706:48–57. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shi Z, Yuan S, Shi L, Li J, Ning G, Kong X and Feng S: Programmed cell death in spinal cord injury pathogenesis and therapy. Cell Prolif. 54:e129922021. View Article : Google Scholar : PubMed/NCBI | |
Martin-Sanchez D, Ruiz-Andres O, Poveda J, Carrasco S, Cannata-Ortiz P, Sanchez-Niño MD, Ruiz Ortega M, Egido J, Linkermann A, Ortiz A and Sanz AB: Ferroptosis, but not necroptosis, is important in nephrotoxic folic Acid-induced AKI. J Am Soc Nephrol. 28:218–229. 2017. View Article : Google Scholar : PubMed/NCBI | |
Müller T, Dewitz C, Schmitz J, Schröder AS, Bräsen JH, Stockwell BR, Murphy JM, Kunzendorf U and Krautwald S: Necroptosis and ferroptosis are alternative cell death pathways that operate in acute kidney failure. Cell Mol Life Sci. 74:3631–3645. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu B, Zhao C, Li H, Chen X, Ding Y and Xu S: Puerarin protects against heart failure induced by pressure overload through mitigation of ferroptosis. Biochem Biophys Res Commun. 497:233–240. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Xu S, Zhao C and Liu B: Role of TLR4/NADPH oxidase 4 pathway in promoting cell death through autophagy and ferroptosis during heart failure. Biochem Biophys Res Commun. 516:37–43. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li D, Pi W, Sun Z, Liu X and Jiang J: Ferroptosis and its role in cardiomyopathy. Biomed Pharmacother. 153:1132792022. View Article : Google Scholar : PubMed/NCBI | |
Ng SW, Norwitz SG and Norwitz ER: The impact of iron overload and ferroptosis on reproductive disorders in humans: Implications for preeclampsia. Int J Mol Sci. 20:32832019. View Article : Google Scholar : PubMed/NCBI | |
Ng SW, Norwitz SG, Taylor HS and Norwitz ER: Endometriosis: The role of iron overload and ferroptosis. Reprod Sci. 27:1383–1390. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yan HF, Zou T, Tuo QZ, Xu S, Li H, Belaidi AA and Lei P: Ferroptosis: Mechanisms and links with diseases. Signal Transduct TargetTher. 6:492021. View Article : Google Scholar | |
Yan H, Talty R, Aladelokun O, Bosenberg M and Johnson CH: Ferroptosis in colorectal cancer: A future target? Br J Cancer. 128:1439–1451. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wu T, Wan J, Qu X, Xia K, Wang F, Zhang Z, Yang M, Wu X, Gao R, Yuan X, et al: Nodal promotes colorectal cancer survival and metastasis through regulating SCD1-mediated ferroptosis resistance. Cell Death Dis. 14:2292023. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhang Z, Sun W, Zhang J, Xu Q, Zhou X and Mao L: Ferroptosis in colorectal cancer: Potential mechanisms and effective therapeutic targets. Biomed Pharmacother. 153:1135242022. View Article : Google Scholar : PubMed/NCBI | |
Jiang L, Hickman JH, Wang SJ and Gu W: Dynamic roles of p53-mediated metabolic activities in ROS-induced stress responses. Cell Cycle. 14:2881–2885. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, Baer R and Gu W: Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 520:57–62. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Chen K, Zhang T, Jiang D, Chen L, Jiang J, Zhang C and Li S: Understanding Sorafenib-induced ferroptosis and resistance mechanisms: Implications for cancer therapy. Eur J Pharmacol. 955:1759132023. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Kang R, Kroemer G and Tang D: Broadening horizons: The role of ferroptosis in cancer. Nat Rev Clin Oncol. 18:280–296. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Liu Y, Du T, Yang H, Lei L, Guo M, Ding HF, Zhang J, Wang H, Chen X and Yan C: ATF3 promotes Erastin-induced ferroptosis by suppressing system Xc. Cell Death Differ. 27:662–675. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yang WS and Stockwell BR: Synthetic lethal screening identifies compounds activating Iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol. 15:234–245. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sui X, Zhang R, Liu S, Duan T, Zhai L, Zhang M, Han X, Xiang Y, Huang X, Lin H and Xie T: RSL3 drives ferroptosis through GPX4 inactivation and ROS production in colorectal cancer. Front Pharmacol. 9:13712018. View Article : Google Scholar : PubMed/NCBI | |
Costa I, Barbosa DJ, Benfeito S, Silva V, Chavarria D, Borges F, Remião F and Silva R: Molecular mechanisms of ferroptosis and their involvement in brain diseases. Pharmacol Ther. 244:1083732023. View Article : Google Scholar : PubMed/NCBI | |
Harayama T and Riezman H: Understanding the diversity of membrane lipid composition. Nat Rev Mol Cell Biol. 19:281–296. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kagan VE, Mao G, Qu F, Angeli JP, Doll S, Croix CS, Dar HH, Liu B, Tyurin VA, Ritov VB, et al: Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol. 13:81–90. 2017. View Article : Google Scholar : PubMed/NCBI | |
Koppula P, Zhuang L and Gan B: Cytochrome P450 reductase (POR) as a ferroptosis fuel. Protein Cell. 12:675–679. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yan B, Ai Y, Sun Q, Ma Y, Cao Y, Wang J, Zhang Z and Wang X: Membrane damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases POR and CYB5R1. Mol Cell. 81:355–369.e10. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zou Y, Li H, Graham ET, Deik AA, Eaton JK, Wang W, Sandoval-Gomez G, Clish CB, Doench JG and Schreiber SL: Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat Chem Biol. 16:302–309. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ning X, Qi H, Yuan Y, Li R, Wang Y, Lin Z and Yin Y: Identification of a new small molecule that initiates ferroptosis in cancer cells by inhibiting the system Xc− to deplete GSH. Eur J Pharmacol. 934:1753042022. View Article : Google Scholar : PubMed/NCBI | |
Fan X, Li A, Yan Z, Geng X, Lian L, Lv H, Gao D and Zhang J: From iron metabolism to ferroptosis: Pathologic changes in coronary heart disease. Oxid Med Cell Longev. 2022:62918892022. View Article : Google Scholar : PubMed/NCBI | |
Zhou L, Zhao B, Zhang L, Wang S, Dong D, Lv H and Shang P: Alterations in cellular iron metabolism provide more therapeutic opportunities for cancer. Int J Mol Sci. 19:15452018. View Article : Google Scholar : PubMed/NCBI | |
Basak T and Kanwar RK: Iron imbalance in cancer: Intersection of deficiency and overload. Cancer Med. 11:3837–3853. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chifman J, Laubenbacher R and Torti SV: A systems biology approach to iron metabolism. Adv Exp Med Biol. 844:201–225. 2014. View Article : Google Scholar : PubMed/NCBI | |
Han C, Liu Y, Dai R, Ismail N, Su W and Li B: Ferroptosis and its potential role in human diseases. Front Pharmacol. 11:2392020. View Article : Google Scholar : PubMed/NCBI | |
Manz DH, Blanchette NL, Paul BT, Torti FM and Torti SV: Iron and cancer: Recent insights. Ann N Y Acad Sci. 1368:149–161. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhou B, Liu J, Kang R, Klionsky DJ, Kroemer G and Tang D: Ferroptosis is a type of Autophagy-dependent cell death. Semin Cancer Biol. 66:89–100. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mancias JD, Wang X, Gygi SP, Harper JW and Kimmelman AC: Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature. 509:105–109. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh HJ III, Kang R and Tang D: Autophagy promotes ferroptosis by degradation of ferritin. Autophagy. 12:1425–1428. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, Kang R and Tang D: Ferroptosis: Process and function. Cell Death Differ. 23:369–379. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Mo J, Dai J, Ye C, Cen W, Zheng X, Jiang L and Ye L: Cetuximab promotes RSL3-induced ferroptosis by suppressing the Nrf2/HO-1 signalling pathway in KRAS mutant colorectal cancer. Cell Death Dis. 12:10792021. View Article : Google Scholar : PubMed/NCBI | |
Tian X, LI S and Ge G: Apatinib promotes ferroptosis in colorectal cancer cells by targeting ELOVL6/ACSL4 Signaling. Cancer Manag Res. 13:1333–1342. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhu JF, Liu Y, Li WT, Li MH, Zhen CH, Sun PW, Chen JX, Wu WH and Zeng W: Ibrutinib facilitates the sensitivity of colorectal cancer cells to ferroptosis through BTK/NRF2 pathway. Cell Death Dis. 14:1512023. View Article : Google Scholar : PubMed/NCBI | |
Zhao X and Chen F: Propofol induces the ferroptosis of colorectal cancer cells by downregulating STAT3 expression. Oncol Lett. 22:7672021. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Qi Q, Wu N, Wang Y, Feng Q, Jin R and Jiang L: Aspirin promotes RSL3-induced ferroptosis by suppressing mTOR/SREBP-1/SCD1-mediated lipogenesis in PIK3CA-mutant colorectal cancer. Redox Biol. 55:1024262022. View Article : Google Scholar : PubMed/NCBI | |
Shen Z, Zhao L, Yoo SA, Lin Z, Zhang Y, Yang W and Piao J: Emodin induces ferroptosis in colorectal cancer through NCOA4-mediated ferritinophagy and NF-κb pathway inactivation. Apoptosis. May 5–2024.doi: 10.1007/s10495-024-01973-2 (Epub ahead of print). View Article : Google Scholar | |
Wu Y, Pi D, Zhou S, Yi Z, Dong Y, Wang W, Ye H, Chen Y, Zuo Q and Ouyang M: Ginsenoside Rh3 induces pyroptosis and ferroptosis through the Stat3/p53/NRF2 axis in colorectal cancer cells. Acta Biochim Biophys Sin (Shanghai). 55:587–600. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ming T, Lei J, Peng Y, Wang M, Liang Y, Tang S, Tao Q, Wang M, Tang X, He Z, et al: Curcumin suppresses colorectal cancer by induction of ferroptosis via regulation of p53 and solute carrier family 7 member 11/glutathione/glutathione peroxidase 4 signaling axis. Phytother Res. 38:3954–3972. 2024. View Article : Google Scholar : PubMed/NCBI | |
Miyazaki K, Xu C, Shimada M and Goel A: Curcumin and andrographis exhibit Anti-tumor effects in colorectal cancer via activation of ferroptosis and dual suppression of glutathione Peroxidase-4 and ferroptosis suppressor Protein-1. Pharmaceuticals (Basel). 16:3832023. View Article : Google Scholar : PubMed/NCBI | |
Ji X, Chen Z, Lin W, Wu Q, Wu Y, Hong Y, Tong H, Wang C and Zhang Y: Esculin induces endoplasmic reticulum stress and drives apoptosis and ferroptosis in colorectal cancer via PERK regulating eIF2α/CHOP and Nrf2/HO-1 cascades. J Ethnopharmacol. 328:1181392024. View Article : Google Scholar : PubMed/NCBI | |
Lai JQ, Zhao LL, Hong C, Zou QM, Su JX, Li SJ, Zhou XF, Li ZS, Deng B, Cao J and Qi Q: Baicalein triggers ferroptosis in colorectal cancer cells via blocking the JAK2/STAT3/GPX4 axis. Acta Pharmacol Sin. 45:1715–1726. 2024. View Article : Google Scholar : PubMed/NCBI | |
Li J, Jiang JL, Chen YM and Lu WQ: KLF2 inhibits colorectal cancer progression and metastasis by inducing ferroptosis via the PI3K/AKT signaling pathway. J Pathol Clin Res. 9:423–435. 2023. View Article : Google Scholar : PubMed/NCBI | |
Park S, Oh J, Kim M and Jin EJ: Bromelain effectively suppresses Kras-mutant colorectal cancer by stimulating ferroptosis. Anim Cells Syst (Seoul). 22:334–340. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wei R, Zhao Y, Wang J, Yang X, Li S, Wang Y, Yang X, Fei J, Hao X, Zhao Y, et al: Tagitinin C induces ferroptosis through PERK-Nrf2-HO-1 signaling pathway in colorectal cancer cells. Int J Biol Sci. 17:2703–2717. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ko YH, Domingo-Vidal M, Roche M, Lin Z, Whitaker-Menezes D, Seifert E, Capparelli C, Tuluc M, Birbe RC, Tassone P, et al: TP53-inducible glycolysis and apoptosis regulator (TIGAR) metabolically reprograms carcinoma and stromal cells in breast cancer. J Biol Chem. 291:26291–26303. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu MY, Li HM, Wang XY, Xia R, Li X, Ma YJ, Wang M and Zhang HS: TIGAR drives colorectal cancer ferroptosis resistance through ROS/AMPK/SCD1 pathway. Free Radic Biol Med. 182:219–231. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chaudhary N, Choudhary BS, Shah SG, Khapare N, Dwivedi N, Gaikwad A, Joshi N, Raichanna J, Basu S, Gurjar M, et al: Lipocalin 2 expression promotes tumor progression and therapy resistance by inhibiting ferroptosis in colorectal cancer. Int J Cancer. 149:1495–1511. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Yan C, Chang C, Meng F, Shen W, Wang S and Zhang Y: FOXA2 suppression by TRIM36 exerts Anti-tumor role in colorectal cancer via inducing NRF2/GPX4-Regulated ferroptosis. Adv Sci (Weinh). 10:e23045212023. View Article : Google Scholar : PubMed/NCBI | |
Wu W, Zhao Y, Qin B, Jiang X, Wang C, Hu R, Ma R, Lee MH, Liu H, Li K and Yuan P: Non-canonical role of UCKL1 on ferroptosis defence in colorectal cancer. EBioMedicine. 93:1046502023. View Article : Google Scholar : PubMed/NCBI | |
Martino E, Balestrieri A, Aragona F, Bifulco G, Mele L, Campanile G, Balestrieri ML and D'Onofrio N: MiR-148a-3p promotes colorectal cancer cell ferroptosis by targeting SLC7A11. Cancers (Basel). 15:43422023. View Article : Google Scholar : PubMed/NCBI | |
Elrebehy MA, Abdelghany TM, Elshafey MM, Gomaa MH and Doghish AS: miR-509-5p promotes colorectal cancer cell ferroptosis by targeting SLC7A11. Pathol Res Pract. 247:1545572023. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Yao H, Zhou X, Chen J, Chen G, Shi X, Wu G, Zhou G and He S: MiR-15a-3p regulates ferroptosis via targeting glutathione peroxidase GPX4 in colorectal cancer. Mol Carcinog. 61:301–310. 2022. View Article : Google Scholar : PubMed/NCBI | |
Fan H, Ai R, Mu S, Niu X, Guo Z and Liu L: MiR-19a suppresses ferroptosis of colorectal cancer cells by targeting IREB2. Bioengineered. 13:12021–12029. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zheng S, Hu L, Song Q, Shan Y, Yin G, Zhu H, Kong W and Zhou C: miR-545 promotes colorectal cancer by inhibiting transferring in the non-normal ferroptosis signaling. Aging. 13:26137–26147. 2021. View Article : Google Scholar : PubMed/NCBI | |
Han Y, Gao X, Wu N, Jin Y, Zhou H, Wang W, Liu H, Chu Y, Cao J, Jiang M, et al: Long noncoding RNA LINC00239 inhibits ferroptosis in colorectal cancer by binding to Keap1 to stabilize Nrf2. Cell Death Dis. 13:7422022. View Article : Google Scholar : PubMed/NCBI | |
Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI, Ostrand-Rosenberg S, Hedrick CC, et al: Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 24:541–550. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen F, Zhuang X, Lin L, Yu P, Wang Y, Shi Y, Hu G and Sun Y: New horizons in tumor microenvironment biology: Challenges and opportunities. BMC Med. 13:452015. View Article : Google Scholar : PubMed/NCBI | |
Dai E, Han L, Liu J, Xie Y, Kroemer G, Klionsky DJ, Zeh HJ, Kang R, Wang J and Tang D: Autophagy-dependent ferroptosis drives tumor-associated macrophage polarization via release and uptake of oncogenic KRAS protein. Autophagy. 16:2069–2083. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ma X, Xiao L, Liu L, Ye L, Su P, Bi E, Wang Q, Yang M, Qian J and Yi Q: CD36-mediated ferroptosis dampens intratumoral CD8+ T cell effector function and impairs their antitumor ability. Cell Metab. 33:1001–1012.e5. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yao L, Hou J, Wu X, Lu Y, Jin Z, Yu Z, Yu B, Li J, Yang Z, Li C, et al: Cancer-associated fibroblasts impair the cytotoxic function of NK cells in gastric cancer by inducing ferroptosis via iron regulation. Redox Biol. 67:1029232023. View Article : Google Scholar : PubMed/NCBI | |
St Paul M and Ohashi PS: The roles of CD8+ T cell subsets in antitumor immunity. Trends Cell Biol. 30:695–704. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tang R, Xu J, Zhang B, Liu J, Liang C, Hua J, Meng Q, Yu X and Shi S: Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J Hematol Oncol. 13:1102020. View Article : Google Scholar : PubMed/NCBI | |
Han J, Khatwani N, Searles TG, Turk MJ and Angeles CV: Memory CD8+ T cell responses to cancer. Semin Immunol. 49:1014352020. View Article : Google Scholar : PubMed/NCBI | |
Lin Z, Zou S and Wen K: The crosstalk of CD8+ T cells and ferroptosis in cancer. Front Immunol. 14:12554432024. View Article : Google Scholar : PubMed/NCBI | |
Yang C, Zhang Y, Lin S, Liu Y and Li W: Suppressing the KIF20A/NUAK1/Nrf2/GPX4 signaling pathway induces ferroptosis and enhances the sensitivity of colorectal cancer to oxaliplatin. Aging (Albany NY). 13:13515–13534. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lin JF, Hu PS, Wang YY, Tan YT, Yu K, Liao K, Wu QN, Li T, Meng Q, Lin JZ, et al: Phosphorylated NFS1 weakens oxaliplatin-based chemosensitivity of colorectal cancer by preventing PANoptosis. Signal Transduct Target Ther. 7:542022. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Hao J, Chen Q, Qin Y, Qin H, Ren S, Sun C, Zhu Y, Shao B, Zhang J and Wang H: Inhibition of the RBMS1/PRNP axis improves ferroptosis resistance-mediated oxaliplatin chemoresistance in colorectal cancer. Mol Carcinog. 63:224–237. 2024. View Article : Google Scholar : PubMed/NCBI | |
Li B, Wei Z, Wang Z, Xu F, Yang J, Lin B, Chen Y, Wenren H, Wu L, Guo X, et al: Fusobacterium nucleatum induces oxaliplatin resistance by inhibiting ferroptosis through E-cadherin/β-catenin/GPX4 axis in colorectal cancer. Free Radic Biol Med. 220:125–138. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zeng K, Li W, Wang Y, Zhang Z, Zhang L, Zhang W, Xing Y and Zhou C: Inhibition of CDK1 Overcomes oxaliplatin resistance by regulating ACSL4-mediated ferroptosis in colorectal cancer. Adv Sci (Weinh). 10:23010882023. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Liu C, Xiao J, Qian C, Chen Z, Lin W, Zhang Y, Wu J, Zhou R and Zhao L: HTRA1 interacts with SLC7A11 to modulate colorectal cancer chemosensitivity by inhibiting ferroptosis. Cell Death Discovery. 10:2282024. View Article : Google Scholar : PubMed/NCBI | |
Mu M, Zhang Q, Zhao C, Li X, Chen Z, Sun X and Yu J: 3-Bromopyruvate overcomes cetuximab resistance in human colorectal cancer cells by inducing Autophagy-dependent ferroptosis. Cancer Gene Therapy. 30:1414–1425. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen P, Li X, Zhang R, Liu S, Xiang Y, Zhang M, Chen X, Pan T, Yan L, Feng J, et al: Combinative treatment of β-elemene and cetuximab is sensitive to KRAS mutant colorectal cancer cells by inducing ferroptosis and inhibiting Epithelial-mesenchymal transformation. Theranostics. 10:5107–5119. 2020. View Article : Google Scholar : PubMed/NCBI |