1
|
Arnold M, Morgan E, Rumgay H, Mafra A,
Singh D, Laversanne M, Vignat J, Gralow JR, Cardoso F, Siesling S
and Soerjomataram I: Current and future burden of breast cancer:
Global statistics for 2020 and 2040. Breast. 66:15–23. 2022.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Long J, Fei C, Li Z and Shaojun MA: Risk
factors for neutropenia during postoperative adjuvant radiotherapy
for breast cancer. J Precision Medicine. 38:530–534. 2023.
|
3
|
Upadhyay R and Bazan JG: Advances in
radiotherapy for breast cancer. Surg Oncol Clin N Am. 32:515–536.
2023. View Article : Google Scholar : PubMed/NCBI
|
4
|
Costin IC and Marcu LG: Factors impacting
on patient setup analysis and error management during breast cancer
radiotherapy. Crit Rev Oncol Hematol. 178:1037982022. View Article : Google Scholar : PubMed/NCBI
|
5
|
de Crevoisier R, Lafond C, Mervoyer A,
Hulot C, Jaksic N, Bessières I and Delpon G: Image-guided
radiotherapy. Cancer Radiother. 26:34–49. 2022. View Article : Google Scholar : PubMed/NCBI
|
6
|
Li G: Advances and potential of optical
surface imaging in radiotherapy. Phys Med Biol.
67:10.1088/1361–6560/ac838f. 2022. View Article : Google Scholar
|
7
|
Mafi M and Moghadam SM: Real-time
prediction of tumor motion using a dynamic neural network. Med Biol
Eng Comput. 58:529–539. 2020. View Article : Google Scholar : PubMed/NCBI
|
8
|
Qiu MM, Zhong JJ, Ouyang B, Xiao ZH and
Deng YJ: Set-up errors distribution prediction model for pelvic
tumors radiotherapy of varian NovalisTX medical linear accelerator
based on gaussian mixtures. J Sun Yat-Sen University (Medical
Sciences). 40:284–290. 2019.
|
9
|
Bishop CM: Pattern recognition and machine
learning. Springer; New York, NY: pp. 423–439. 2006, PubMed/NCBI
|
10
|
Jain AK: Data clustering: 50 years beyond
K-means. Pattern Recognition Letters. 31:651–666. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Hlavka A, Vanasek J, Odrazka K, Stuk J,
Dolezel M, Ulrych V, Vitkova M, Mynarik J, Kolarova I and Vilasova
Z: Tumor bed radiotherapy in women following breast conserving
surgery for breast cancer-safety margin with/without image
guidance. Oncol Lett. 15:6009–6014. 2018.PubMed/NCBI
|
12
|
Buschmann M, Kauer-Dorner D, Konrad S,
Georg D, Widder J and Knäusl B: Stereoscopic X-ray image and
thermo-optical surface guidance for breast cancer radiotherapy in
deep inspiration breath-hold. Strahlenther Onkol. 200:306–313.
2024. View Article : Google Scholar : PubMed/NCBI
|
13
|
van Herk M: Errors and margins in
radiotherapy. Semin Radiat Oncol. 14:52–64. 2004. View Article : Google Scholar : PubMed/NCBI
|
14
|
Chrystall D, Mylonas A, Hewson E, Martin
J, Keall P, Booth J and Nguyen DT: Deep learning enables MV-based
real-time image guided radiation therapy for prostate cancer
patients. Phys Med Biol. 68:10.1088/1361–6560/acc77c. 2023.
View Article : Google Scholar
|
15
|
Hattel SH, Andersen PA, Wahlstedt IH,
Damkjaer S, Saini A and Thomsen JB: Evaluation of setup and
intrafraction motion for surface guided whole breast cancer
radiotherapy. J Appl Clin Med Phys. 20:39–44. 2019. View Article : Google Scholar : PubMed/NCBI
|
16
|
Sakurai Y, Ambo S, Nakamura M, Iramina H,
Iizuka Y, Mitsuyoshi T, Matsuo Y and Mizowaki T: Development of a
prediction model for target positioning by using diaphragm
waveforms extracted from CBCT projection images. J Appl Clin Med
Phys. 24:e141122023. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ghorbanzadeh L, Torshabi AE, Nabipour JS
and Arbatan MA: Development of a synthetic adaptive neuro-fuzzy
prediction model for tumor motion tracking in external radiotherapy
by evaluating various data clustering algorithms. Technol Cancer
Res Treat. 15:334–347. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Li Y, Zeng X, Lin CW and Tseng GC:
Simultaneous estimation of cluster number and feature sparsity in
high-dimensional cluster analysis. Biometrics. 78:574–585. 2022.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Sammouda R and El-Zaart A: An optimized
approach for prostate image segmentation using K-means clustering
algorithm with elbow method. Comput Intell Neurosci.
2021:45538322021. View Article : Google Scholar : PubMed/NCBI
|
20
|
Small W Jr, Mell LK, Anderson P,
Creutzberg C, De Los Santos J, Gaffney D, Jhingran A, Portelance L,
Schefter T, Iyer R, et al: Consensus guidelines for delineation of
clinical target volume for intensity-modulated pelvic radiotherapy
in postoperative treatment of endometrial and cervical cancer. Int
J Radiat Oncol Biol Phys. 71:428–434. 2008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Saliou MG, Giraud P, Simon L,
Fournier-Bidoz N, Fourquet A, Dendale R, Rosenwald JC and Cosset
JM: Radiotherapy for breast cancer: Respiratory and set-up
uncertainties. Cancer Radiother. 9:414–421. 2005. View Article : Google Scholar : PubMed/NCBI
|
22
|
Chen Q, Xi H, Gu Y, Yang XW and Jing HS:
Influencing factors and uncertainty analysis of breast cancer
set-up errors. J Med Postgraduate Students. 2:352022.(In
Chinese).
|
23
|
Chen SF: Research progress of cone-beam CT
guided precision radiotherapy for breast cancer. Chin J Med Phys.
36:32019.(In Chinese).
|
24
|
Donovan EM, James H, Bonora M, Yarnold JR
and Evans PM: Second cancer incidence risk estimates using BEIR VII
models for standard and complex external beam radiotherapy for
early breast cancer. Med Phys. 39:5814–5824. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Shen ZW, Li S, Tan X, Tian XM, Luo HL, Ji
F and Wang Y: Analysis and Verification of The Margin of Target
Volume in Radiotherapy for Breast Cancer After Radical Mastectomy.
Chin J Med Phys. 34:71–78. 2021.(In Chinese).
|
26
|
Batumalai V, Holloway L and Delaney GP: A
review of setup error in supine breast radiotherapy using cone-beam
computed tomography. Med Dosim. 41:225–229. 2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Sailunaz K, Alhajj S, Özyer T, Rokne J and
Alhajj R: A survey on brain tumor image analysis. Med Biol Eng
Comput. 62:1–45. 2024. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ye RZ, Lipatov K, Diedrich D,
Bhattacharyya A, Erickson BJ, Pickering BW and Herasevich V:
Automatic ARDS surveillance with chest X-ray recognition using
convolutional neural networks. J Crit Care. 82:1547942024.
View Article : Google Scholar : PubMed/NCBI
|