Ferroptosis: Potential therapeutic targets and prognostic predictions for acute myeloid leukemia (Review)
- Authors:
- Wenlu Zhang
- Wen Wen
- Ran Tan
- Meirui Zhang
- Tantan Zhong
- Jianhong Wang
- Haiping Chen
- Xiaosheng Fang
-
Affiliations: Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong 250021, P.R. China, Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China, Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China - Published online on: September 30, 2024 https://doi.org/10.3892/ol.2024.14707
- Article Number: 574
-
Copyright : © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
This article is mentioned in:
Abstract
Medinger M, Heim D, Halter JP, Lengerke C and Passweg JR: Diagnosis and therapy of acute myeloid leukemia. Ther Umsch. 76:481–486. 2019.(In German). View Article : Google Scholar : PubMed/NCBI | |
Pelcovits A and Niroula R: Acute myeloid leukemia: A review. R I Med J. 103:38–40. 2020. | |
Shimony S, Stahl M and Stone RM: Acute myeloid leukemia: 2023 update on diagnosis, risk-stratification, and management. Am J Hematol. 98:502–526. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ren Y, Mao X, Xu H, Dang Q, Weng S, Zhang Y, Chen S, Liu S, Ba Y, Zhou Z, et al: Ferroptosis and EMT: Key targets for combating cancer progression and therapy resistance. Cell Mol Life Sci. 80:2632023. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Liu X, Jin S, Chen Y and Guo R: Ferroptosis in cancer therapy: A novel approach to reversing drug resistance. Mol Cancer. 21:472022. View Article : Google Scholar : PubMed/NCBI | |
Mou Y, Wang J, Wu J, He D, Zhang C, Duan C and Li B: Ferroptosis, a new form of cell death: Opportunities and challenges in cancer. J Hematol Oncol. 12:342019. View Article : Google Scholar : PubMed/NCBI | |
Lei G, Zhuang L and Gan B: Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer. 22:381–396. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liang C, Zhang X, Yang M and Dong X: Recent progress in ferroptosis inducers for cancer therapy. Adv Mater. 31:e19041972019. View Article : Google Scholar : PubMed/NCBI | |
Liang D, Minikes AM and Jiang X: Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol Cell. 82:2215–2227. 2022. View Article : Google Scholar : PubMed/NCBI | |
Balihodzic A, Prinz F, Dengler MA, Calin GA, Jost PJ and Pichler M: Non-coding RNAs and ferroptosis: Potential implications for cancer therapy. Cell Death Differ. 29:1094–1106. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hirschhorn T and Stockwell BR: The development of the concept of ferroptosis. Free Radic Biol Med. 133:130–143. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, Sun B and Wang G: Ferroptosis: Past, present and future. Cell Death Dis. 11:882020. View Article : Google Scholar : PubMed/NCBI | |
Stockwell BR, Jiang X and Gu W: Emerging mechanisms and disease relevance of ferroptosis. Trends Cell Biol. 30:478–490. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Li J, Kang R, Klionsky DJ and Tang D: Ferroptosis: Machinery and regulation. Autophagy. 17:2054–2081. 2021. View Article : Google Scholar : PubMed/NCBI | |
Su Y, Zhao B, Zhou L, Zhang Z, Shen Y, Lv H, AlQudsy LHH and Shang P: Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs. Cancer Lett. 483:127–136. 2020. View Article : Google Scholar : PubMed/NCBI | |
Miotto G, Rossetto M, Di Paolo ML, Orian L, Venerando R, Roveri A, Vučković AM, Bosello Travain V, Zaccarin M, Zennaro L, et al: Insight into the mechanism of ferroptosis inhibition by ferrostatin-1. Redox Biol. 28:1013282020. View Article : Google Scholar : PubMed/NCBI | |
Xu T, Ding W, Ji X, Ao X, Liu Y, Yu W and Wang J: Molecular mechanisms of ferroptosis and its role in cancer therapy. J Cell Mol Med. 23:4900–4912. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tang D, Chen X, Kang R and Kroemer G: Ferroptosis: Molecular mechanisms and health implications. Cell Res. 31:107–125. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Wan Y, Jiang Y, Zhang L and Cheng W: GPX4: The hub of lipid oxidation, ferroptosis, disease and treatment. Biochim Biophys Acta Rev Cancer. 1878:1888902023. View Article : Google Scholar : PubMed/NCBI | |
Forcina GC and Dixon SJ: GPX4 at the crossroads of lipid homeostasis and ferroptosis. Proteomics. 19:e18003112019. View Article : Google Scholar : PubMed/NCBI | |
Xing K, Bian X, Shi D, Dong S, Zhou H, Xiao S, Bai J and Wu W: miR-612 Enhances RSL3-Induced ferroptosis of hepatocellular carcinoma cells via mevalonate pathway. J Hepatocell Carcinoma. 10:2173–2185. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ou M, Jiang Y, Ji Y, Zhou Q, Du Z, Zhu H and Zhou Z: Role and mechanism of ferroptosis in neurological diseases. Mol Metab. 61:1015022022. View Article : Google Scholar : PubMed/NCBI | |
Noe R, Inglese N, Romani P, Serafini T, Paoli C, Calciolari B, Fantuz M, Zamborlin A, Surdo NC, Spada V, et al: Organic Selenium induces ferroptosis in pancreatic cancer cells. Redox Biol. 68:1029622023. View Article : Google Scholar : PubMed/NCBI | |
Zheng J and Conrad M: The metabolic underpinnings of ferroptosis. Cell Metab. 32:920–937. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xia J, Si H, Yao W, Li C, Yang G, Tian Y and Hao C: Research progress on the mechanism of ferroptosis and its clinical application. Exp Cell Res. 409:1129322021. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Zhang C, Wang J, Hu W and Feng Z: The regulation of ferroptosis by tumor suppressor p53 and its pathway. Int J Mol Sci. 21:83872020. View Article : Google Scholar : PubMed/NCBI | |
Lei P, Bai T and Sun Y: Mechanisms of ferroptosis and relations with regulated cell death: A Review. Front Physiol. 10:1392019. View Article : Google Scholar : PubMed/NCBI | |
Xu R, Wang W and Zhang W: Ferroptosis and the bidirectional regulatory factor p53. Cell Death Discov. 9:1972023. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Guo M, Wei H and Chen Y: Targeting p53 pathways: Mechanisms, structures, and advances in therapy. Signal Transduct Target Ther. 8:922023. View Article : Google Scholar : PubMed/NCBI | |
Park E and Chung SW: ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation. Cell Death Dis. 10:8222019. View Article : Google Scholar : PubMed/NCBI | |
Stockwell BR: Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell. 185:2401–2421. 2022. View Article : Google Scholar : PubMed/NCBI | |
Fuhrmann DC and Brune B: A graphical journey through iron metabolism, microRNAs, and hypoxia in ferroptosis. Redox Biol. 54:1023652022. View Article : Google Scholar : PubMed/NCBI | |
Bayir H, Dixon SJ, Tyurina YY, Kellum JA and Kagan VE: Ferroptotic mechanisms and therapeutic targeting of iron metabolism and lipid peroxidation in the kidney. Nat Rev Nephrol. 19:315–336. 2023. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R and Tang D: Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology. 63:173–184. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li D and Li Y: The interaction between ferroptosis and lipid metabolism in cancer. Signal Transduct Target Ther. 5:1082020. View Article : Google Scholar : PubMed/NCBI | |
Zheng XJ, Chen WL, Yi J, Li W, Liu JY, Fu WQ, Ren LW, Li S, Ge BB, Yang YH, et al: Apolipoprotein C1 promotes glioblastoma tumorigenesis by reducing KEAP1/NRF2 and CBS-regulated ferroptosis. Acta Pharmacol Sin. 43:2977–2992. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zheng XJ, Chen WL, Yi J, Li W, Liu JY, Fu WQ, Ren LW, Li S, Ge BB, Yang YH, et al: Author Correction: Apolipoprotein C1 promotes glioblastoma tumorigenesis by reducing KEAP1/NRF2 and CBS-regulated ferroptosis. Acta Pharmacol Sin. May 13–2024.doi: 10.1038/s41401-024-01271-2 (Epub ahead of print). | |
Zimta AA, Cenariu D, Irimie A, Magdo L, Nabavi SM, Atanasov AG and Berindan-Neagoe I: The role of Nrf2 activity in cancer development and progression. Cancers (Basel). 11:17552019. View Article : Google Scholar : PubMed/NCBI | |
Grignano E, Birsen R, Chapuis N and Bouscary D: From iron chelation to overload as a therapeutic strategy to induce ferroptosis in leukemic cells. Front Oncol. 10:5865302020. View Article : Google Scholar : PubMed/NCBI | |
Zeng F, Nijiati S, Tang L, Ye J, Zhou Z and Chen X: Ferroptosis detection: From approaches to applications. Angew Chem Int Ed Engl. 62:e2023003792023. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Kang R, Kroemer G and Tang D: Broadening horizons: The role of ferroptosis in cancer. Nat Rev Clin Oncol. 18:280–296. 2021. View Article : Google Scholar : PubMed/NCBI | |
Koppula P, Zhuang L and Gan B: Cystine transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 12:599–620. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Ou Z, Xie M, Kang R, Fan Y, Niu X, Wang H, Cao L and Tang D: HSPB1 as a novel regulator of ferroptotic cancer cell death. Oncogene. 34:5617–5625. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu Y and Gu W: p53 in ferroptosis regulation: The new weapon for the old guardian. Cell Death Differ. 29:895–910. 2022. View Article : Google Scholar : PubMed/NCBI | |
Gong D, Chen M, Wang Y, Shi J and Hou Y: Role of ferroptosis on tumor progression and immunotherapy. Cell Death Discov. 8:4272022. View Article : Google Scholar : PubMed/NCBI | |
Liu Y and Gu W: The complexity of p53-mediated metabolic regulation in tumor suppression. Semin Cancer Biol. 85:4–32. 2022. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Zhang H, Wang J, Li F, Li X, Li T, Wang C, Li L, Peng R, Liu L, et al: Annexin A5 ameliorates traumatic brain injury-induced neuroinflammation and neuronal ferroptosis by modulating the NF-kB/HMGB1 and Nrf2/HO-1 pathways. Int Immunopharmacol. 114:1096192023. View Article : Google Scholar : PubMed/NCBI | |
Ursini F and Maiorino M: Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic Biol Med. 152:175–185. 2020. View Article : Google Scholar : PubMed/NCBI | |
Pope LE and Dixon SJ: Regulation of ferroptosis by lipid metabolism. Trends Cell Biol. 33:1077–1087. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Zhou X, Xie F and Zhang L, Yan H, Huang J, Zhang C, Zhou F, Chen J and Zhang L: Ferroptosis in cancer and cancer immunotherapy. Cancer Commun (Lond). 42:88–116. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lee H, Zandkarimi F, Zhang Y, Meena JK, Kim J, Zhuang L, Tyagi S, Ma L, Westbrook TF, Steinberg GR, et al: Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat Cell Biol. 22:225–234. 2020. View Article : Google Scholar : PubMed/NCBI | |
Song X, Zhu S, Chen P, Hou W, Wen Q, Liu J, Xie Y, Liu J, Klionsky DJ, Kroemer G, et al: AMPK-Mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system Xc-Activity. Curr Biol. 28:2388–2399. 2018. View Article : Google Scholar : PubMed/NCBI | |
Winer ES: Secondary acute myeloid leukemia: A primary challenge of diagnosis and treatment. Hematol Oncol Clin North Am. 34:449–463. 2020. View Article : Google Scholar : PubMed/NCBI | |
Su Y, Zhao B, Zhou L, Zhang Z, Shen Y, Lv H, AlQudsy LHH and Shang P: Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs. Cancer Lett. 483:127–136. 2020. View Article : Google Scholar : PubMed/NCBI | |
Farge T, Saland E, de Toni F, Aroua N, Hosseini M, Perry R, Bosc C, Sugita M, Stuani L, Fraisse M, et al: Chemotherapy-Resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism. Cancer Discov. 7:716–735. 2017. View Article : Google Scholar : PubMed/NCBI | |
Akiyama H, Zhao R, Ostermann LB, Li Z, Tcheng M, Yazdani SJ, Moayed A, Pryor ML II, Slngh S, Baran N, et al: Correction: Mitochondrial regulation of GPX4 inhibition-mediated ferroptosis in acute myeloid leukemia. Leukemia. 38:9262024. View Article : Google Scholar : PubMed/NCBI | |
Auberger P, Favreau C, Savy C, Jacquel A and Robert G: Emerging role of glutathione peroxidase 4 in myeloid cell lineage development and acute myeloid leukemia. Cell Mol Biol Lett. 29:982024. View Article : Google Scholar : PubMed/NCBI | |
Zhong X, Zhang Z, Shen H, Xiong Y, Shah YM, Liu Y, Fan XG and Rui L: Hepatic NF-κB-Inducing kinase and inhibitor of NF-κB kinase subunit α promote liver oxidative stress, ferroptosis, and liver injury. Hepatol Commun. 5:1704–1720. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rushworth SA, Zaitseva L, Murray MY, Shah NM, Bowles KM and MacEwan DJ: The high Nrf2 expression in human acute myeloid leukemia is driven by NF-κB and underlies its chemo-resistance. Blood. 120:5188–5198. 2012. View Article : Google Scholar : PubMed/NCBI | |
Akiyama H, Zhao R, Ostermann LB, Li Z, Tcheng M, Yazdani SJ, Moayed A, Pryor ML II, Slngh S, Baran N, et al: Mitochondrial regulation of GPX4 inhibition-mediated ferroptosis in acute myeloid leukemia. Leukemia. 38:729–740. 2024. View Article : Google Scholar : PubMed/NCBI | |
Pabst T, Kortz L, Fiedler GM, Ceglarek U, Idle JR and Beyoğlu D: The plasma lipidome in acute myeloid leukemia at diagnosis in relation to clinical disease features. BBA Clin. 7:105–114. 2017. View Article : Google Scholar : PubMed/NCBI | |
Strickland SA and Vey N: Diagnosis and treatment of therapy-related acute myeloid leukemia. Crit Rev Oncol Hematol. 171:1036072022. View Article : Google Scholar : PubMed/NCBI | |
Roberts MD, Langston AA and Heffner LJ: Acute myeloid leukemia in young adults: Does everyone need a transplant? J Oncol Pract. 15:315–320. 2019. View Article : Google Scholar | |
Barriga F, Ramirez P, Wietstruck A and Rojas N: Hematopoietic stem cell transplantation: Clinical use and perspectives. Biol Res. 45:307–316. 2012. View Article : Google Scholar : PubMed/NCBI | |
Birsen R, Larrue C, Decroocq J, Johnson N, Guiraud N, Gotanegre M, Cantero-Aguilar L, Grignano E, Huynh T, Fontenay M, et al: APR-246 induces early cell death by ferroptosis in acute myeloid leukemia. Haematologica. 107:403–416. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yusuf RZ, Saez B, Sharda A, van Gastel N, Yu VWC, Baryawno N, Scadden EW, Acharya S, Chattophadhyay S, Huang C, et al: Aldehyde dehydrogenase 3a2 protects AML cells from oxidative death and the synthetic lethality of ferroptosis inducers. Blood. 136:1303–1316. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Su R, Bao X, Cao K, Du Y, Wang N, Wang J, Xing F, Yan F, Huang K and Feng S: Glycyrrhetinic acid nanoparticles combined with ferrotherapy for improved cancer immunotherapy. Acta Biomater. 144:109–120. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cao K, Du Y, Bao X, Han M, Su R, Pang J, Liu S, Shi Z, Yan F and Feng S: Glutathione-Bioimprinted nanoparticles targeting of N6-methyladenosine FTO Demethylase as a strategy against leukemic stem cells. Small. 18:e21065582022. View Article : Google Scholar : PubMed/NCBI | |
Peng X, Zhang MQ, Conserva F, Hosny G, Selivanova G, Bykov VJ, Arnér ES and Wiman KG: APR-246/PRIMA-1MET inhibits thioredoxin reductase 1 and converts the enzyme to a dedicated NADPH oxidase. Cell Death Dis. 4:e8812013. View Article : Google Scholar : PubMed/NCBI | |
Ali D, Jonsson-Videsater K, Deneberg S, Bengtzén S, Nahi H, Paul C and Lehmann S: APR-246 exhibits anti-leukemic activity and synergism with conventional chemotherapeutic drugs in acute myeloid leukemia cells. Eur J Haematol. 86:206–215. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sallman DA, DeZern AE, Garcia-Manero G, Steensma DP, Roboz GJ, Sekeres MA, Cluzeau T, Sweet KL, McLemore A, McGraw KL, et al: Eprenetapopt (APR-246) and azacitidine in TP53-Mutant myelodysplastic syndromes. J Clin Oncol. 39:1584–1594. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Tang B, Zhu J, Yu J, Hui J, Xia S and Ji J: Emerging mechanisms and targeted therapy of ferroptosis in neurological diseases and Neuro-oncology. Int J Biol Sci. 18:4260–4274. 2022. View Article : Google Scholar : PubMed/NCBI | |
Dong LH, Huang JJ, Zu P, Liu J, Gao X, Du JW and Li YF: CircKDM4C upregulates P53 by sponging hsa-let-7b-5p to induce ferroptosis in acute myeloid leukemia. Environ Toxicol. 36:1288–1302. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kang R, Kroemer G and Tang D: The tumor suppressor protein p53 and the ferroptosis network. Free Radic Biol Med. 133:162–168. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yu Y, Meng Y, Xu X, Tong T, He C, Wang L, Wang K, Zhao M, You X, Zhang W, et al: A Ferroptosis-inducing and leukemic cell-Targeting drug nanocarrier formed by Redox-Responsive cysteine polymer for acute myeloid leukemia therapy. ACS Nano. 17:3334–3345. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lang X, Green MD, Wang W, Yu J, Choi JE, Jiang L, Liao P, Zhou J, Zhang Q, Dow A, et al: Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov. 9:1673–1685. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xu H, Ye D, Ren M, Zhang H and Bi F: Ferroptosis in the tumor microenvironment: Perspectives for immunotherapy. Trends Mol Med. 27:856–867. 2021. View Article : Google Scholar : PubMed/NCBI | |
Su R, Dong L, Li Y, Gao M, Han L, Wunderlich M, Deng X, Li H, Huang Y, Gao L, et al: Targeting FTO suppresses cancer stem cell maintenance and immune evasion. Cancer Cell. 38:79–96. 2020. View Article : Google Scholar : PubMed/NCBI | |
Du Y, Han M, Cao K, Li Q, Pang J, Dou L, Liu S, Shi Z, Yan F and Feng S: Gold nanorods exhibit intrinsic therapeutic activity via controlling N6-methyladenosine-based Epitranscriptomics in acute myeloid leukemia. ACS Nano. 15:17689–17704. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wen Q, Liu J, Kang R, Zhou B and Tang D: The release and activity of HMGB1 in ferroptosis. Biochem Biophys Res Commun. 510:278–283. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen GQ, Benthani FA, Wu J, Liang D, Bian ZX and Jiang X: Artemisinin compounds sensitize cancer cells to ferroptosis by regulating iron homeostasis. Cell Death Differ. 27:242–254. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhu HY, Huang ZX, Chen GQ, Sheng F and Zheng YS: Typhaneoside prevents acute myeloid leukemia (AML) through suppressing proliferation and inducing ferroptosis associated with autophagy. Biochem Biophys Res Commun. 516:1265–1271. 2019. View Article : Google Scholar : PubMed/NCBI | |
Du Y, Bao J, Zhang MJ, Li LL, Xu XL, Chen H, Feng YB, Peng XQ and Chen FH: Targeting ferroptosis contributes to ATPR-induced AML differentiation via ROS-autophagy-lysosomal pathway. Gene. 755:1448892020. View Article : Google Scholar : PubMed/NCBI | |
Bruedigam C, Porter AH, Song A, Vroeg In de Wei G, Stoll T, Straube J, Cooper L, Cheng G, Kahl VFS, Sobinoff AP, et al: Imetelstat-mediated alterations in fatty acid metabolism to induce ferroptosis as a therapeutic strategy for acute myeloid leukemia. Nat Cancer. 5:47–65. 2024. View Article : Google Scholar : PubMed/NCBI | |
Lai X, Sun Y, Zhang X, Wang D, Wang J, Wang H, Zhao Y, Liu X, Xu X, Song H, et al: Honokiol induces ferroptosis by upregulating HMOX1 in acute myeloid leukemia cells. Front Pharmacol. 13:8977912022. View Article : Google Scholar : PubMed/NCBI | |
Gan B: How erastin assassinates cells by ferroptosis revealed. Protein Cell. 14:84–86. 2023.PubMed/NCBI | |
Yu Y, Xie Y, Cao L, Yang L, Yang M, Lotze MT, Zeh HJ, Kang R and Tang D: The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic agents. Mol Cell Oncol. 2:e10545492015. View Article : Google Scholar : PubMed/NCBI | |
Ye F, Chai W, Xie M, Yang M, Yu Y, Cao L and Yang L: HMGB1 regulates erastin-induced ferroptosis via RAS-JNK/p38 signaling in HL-60/NRAS(Q61L) cells. Am J Cancer Res. 9:730–739. 2019.PubMed/NCBI | |
Du J, Wang T, Li Y, Zhou Y, Wang X, Yu X, Ren X, An Y, Wu Y, Sun W, et al: DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin. Free Radic Biol Med. 131:356–369. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nishizawa H, Yamanaka M and Igarashi K: Ferroptosis: Regulation by competition between NRF2 and BACH1 and propagation of the death signal. FEBS J. 290:1688–1704. 2023. View Article : Google Scholar : PubMed/NCBI | |
Du Y, Zhang MJ, Li LL, Xu XL, Chen H, Feng YB, Li Y, Peng XQ and Chen FH: ATPR triggers acute myeloid leukaemia cells differentiation and cycle arrest via the RARalpha/LDHB/ERK-glycolysis signalling axis. J Cell Mol Med. 24:6952–6965. 2020. View Article : Google Scholar : PubMed/NCBI | |
Pelcovits A and Niroula R: Acute myeloid leukemia: A review. R I Med J (2013). 103:38–40. 2020.PubMed/NCBI | |
Yin Z, Li F, Zhou Q, Zhu J, Liu Z, Huang J, Shen H, Ou R, Zhu Y, Zhang Q and Liu S: A ferroptosis-related gene signature and immune infiltration patterns predict the overall survival in acute myeloid leukemia patients. Front Mol Biosci. 9:9597382022. View Article : Google Scholar : PubMed/NCBI | |
Prada-Arismendy J, Arroyave JC and Rothlisberger S: Molecular biomarkers in acute myeloid leukemia. Blood Rev. 31:63–76. 2017. View Article : Google Scholar : PubMed/NCBI | |
Han C, Zheng J, Li F, Guo W and Cai C: Novel prognostic signature for acute myeloid leukemia: Bioinformatics analysis of combined CNV-driven and ferroptosis-related genes. Front Genet. 13:8494372022. View Article : Google Scholar : PubMed/NCBI | |
Song Y, Tian S, Zhang P, Zhang N, Shen Y and Deng J: Construction and validation of a novel Ferroptosis-Related prognostic model for acute myeloid leukemia. Front Genet. 12:7086992022. View Article : Google Scholar : PubMed/NCBI | |
Wei J, Xie Q, Liu X, Wan C, Wu W, Fang K, Yao Y, Cheng P, Deng D and Liu Z: Identification the prognostic value of glutathione peroxidases expression levels in acute myeloid leukemia. Ann Transl Med. 8:6782020. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Wu T, Yan Z and Zhang M: Identification and validation of an 11-Ferroptosis related gene signature and its correlation with immune checkpoint molecules in glioma. Front Cell Dev Biol. 9:6525992021. View Article : Google Scholar : PubMed/NCBI | |
Huang X, Zhou D, Ye X and Jin J: A novel ferroptosis-related gene signature can predict prognosis and influence immune microenvironment in acute myeloid leukemia. Bosn J Basic Med Sci. 22:608–628. 2021.PubMed/NCBI | |
Zhu L, Yang F, Wang L, Dong L, Huang Z, Wang G, Chen G and Li Q: Identification the ferroptosis-related gene signature in patients with esophageal adenocarcinoma. Cancer Cell Int. 21:1242021. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Zhang X, Liu K, Li W, Wang J, Liu P and Ma W: HIVEP3 cooperates with ferroptosis gene signatures to confer adverse prognosis in acute myeloid leukemia. Cancer Med. 11:5050–5065. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jiang B, Zhao Y, Shi M, Song L, Wang Q, Qin Q, Song X, Wu S, Fang Z and Liu X: DNAJB6 promotes ferroptosis in esophageal squamous cell carcinoma. Dig Dis Sci. 65:1999–2008. 2020. View Article : Google Scholar : PubMed/NCBI | |
Meng E, Shevde LA and Samant RS: Retraction: Emerging roles and underlying molecular mechanisms of DNAJB6 in cancer. Oncotarget. 14:6692023. View Article : Google Scholar : PubMed/NCBI | |
Liang Y, Wang Y, Zhang Y, Ye F, Luo D, Li Y, Jin Y, Han D, Wang Z, Chen B, et al: HSPB1 facilitates chemoresistance through inhibiting ferroptotic cancer cell death and regulating NF-κB signaling pathway in breast cancer. Cell Death Dis. 14:4342023. View Article : Google Scholar : PubMed/NCBI | |
Yan XS, Sun YJ, Du J, Niu WY, Qiao H and Yin XC: Effects of ferroptosis-related gene HSPB1 on acute myeloid leukemia. Int J Lab Hematol. June 2–2024.(Epub ahead of print). View Article : Google Scholar | |
Ma Z, Ye W, Huang X, Li X, Li F, Lin X, Hu C, Wang J, Jin J, Zhu B and Huang J: The ferroptosis landscape in acute myeloid leukemia. Aging (Albany NY). 15:13486–13503. 2023. View Article : Google Scholar : PubMed/NCBI | |
Guo S, Li F, Liang Y, Zheng Y, Mo Y, Zhao D, Jiang Z, Cui M, Qi L, Chen J, et al: AIFM2 promotes hepatocellular carcinoma metastasis by enhancing mitochondrial biogenesis through activation of SIRT1/PGC-1α signaling. Oncogenesis. 12:462023. View Article : Google Scholar : PubMed/NCBI | |
Sun Q, Liu D, Cui W, Cheng H, Huang L, Zhang R, Gu J, Liu S, Zhuang X, Lu Y, et al: Cholesterol mediated ferroptosis suppression reveals essential roles of Coenzyme Q and squalene. Commun Biol. 6:11082023. View Article : Google Scholar : PubMed/NCBI | |
Shi J, Wu P, Sheng L, Sun W and Zhang H: Ferroptosis-related gene signature predicts the prognosis of papillary thyroid carcinoma. Cancer Cell Int. 21:6692021. View Article : Google Scholar : PubMed/NCBI | |
Song Y, Tian S, Zhang P, Zhang N, Shen Y and Deng J: Construction and validation of a novel Ferroptosis-Related Prognostic model for acute myeloid leukemia. Front Genet. 12:7086992021. View Article : Google Scholar : PubMed/NCBI | |
Dixon SJ, Patel DN, Welsch M, Skouta R, Lee ED, Hayano M, Thomas AG, Gleason CE, Tatonetti NP, Slusher BS and Stockwell BR: Pharmacological inhibition of Cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife. 3:e025232014. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Peng T, Li C, Ai C, Wang X, Lei X, Li G and Li T: Inhibition of CISD1 alleviates mitochondrial dysfunction and ferroptosis in mice with acute lung injury. Int Immunopharmacol. 130:1116852024. View Article : Google Scholar : PubMed/NCBI | |
Xie Y, Zhu S, Song X, Sun X, Fan Y, Liu J, Zhong M, Yuan H, Zhang L, Billiar TR, et al: The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep. 20:1692–1704. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Song A, Yang QC, Li SJ, Wang S, Wan SC, Sun J, Kwok RTK, Lam JWY, Deng H, et al: Integration of AIEgens into covalent organic frameworks for pyroptosis and ferroptosis primed cancer immunotherapy. Nat Commun. 14:53552023. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Zhuo Z, Wang Y, Yang S, Chen J, Wang Y, Geng S, Li M, Du X, Lai P, et al: Identification and validation of a prognostic Risk-scoring model based on Ferroptosis-associated cluster in acute myeloid leukemia. Front Cell Dev Biol. 9:8002672021. View Article : Google Scholar : PubMed/NCBI | |
Rudin CM, Reck M, Johnson ML, Blackhall F, Hann CL, Yang JC, Bailis JM, Bebb G, Goldrick A, Umejiego J and Paz-Ares L: Emerging therapies targeting the delta-like ligand 3 (DLL3) in small cell lung cancer. J Hematol Oncol. 16:662023. View Article : Google Scholar : PubMed/NCBI | |
Ruvolo PP, Ma H, Ruvolo VR, Zhang X, Post SM and Andreeff M: LGALS1 acts as a pro-survival molecule in AML. Biochim Biophys Acta Mol Cell Res. 1867:1187852020. View Article : Google Scholar : PubMed/NCBI | |
Sun J, Lu P, Guan S and Liu S: Heterogeneity analysis of pancreatic cancer and identification of molecular subtypes of tumor cells based on CEACAM5, LGALS1 and CENPF gene expression. Nan Fang Yi Ke Da Xue Xue Bao. 43:1567–1576. 2023.(In Chinese). PubMed/NCBI | |
Zhu W, Liu D, Lu Y, Sun J, Zhu J, Xing Y, Ma X, Wang Y, Ji M and Jia Y: PHKG2 regulates RSL3-induced ferroptosis in Helicobacter pylori related gastric cancer. Arch Biochem Biophys. 740:1095602023. View Article : Google Scholar : PubMed/NCBI | |
Sabatier M, Birsen R, Lauture L, Mouche S, Angelino P, Dehairs J, Goupille L, Boussaid I, Heiblig M, Boet E, et al: C/EBPα confers dependence to fatty acid anabolic pathways and vulnerability to lipid oxidative Stress-Induced ferroptosis in FLT3-mutant leukemia. Cancer Discov. 13:1720–1747. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Hu S, Han Y, Cai Y, Lu T, Hu X, Chu Y, Zhou X and Wang X: Ferroptosis-related STEAP3 acts as predictor and regulator in diffuse large B cell lymphoma through immune infiltration. Clin Exp Med. 23:2601–2617. 2023. View Article : Google Scholar : PubMed/NCBI | |
Dai E, Han L, Liu J, Xie Y, Zeh HJ, Kang R, Bai L and Tang D: Ferroptotic damage promotes pancreatic tumorigenesis through a TMEM173/STING-dependent DNA sensor pathway. Nat Commun. 11:63392020. View Article : Google Scholar : PubMed/NCBI | |
Sadeghi M, Moslehi A, Kheiry H, Kiani FK, Zarei A, Khodakarami A, Karpisheh V, Masjedi A, Rahnama B, Hojjat-Farsangi M, et al: The sensitivity of acute myeloid leukemia cells to cytarabine is increased by suppressing the expression of Heme oxygenase-1 and hypoxia-inducible factor 1-alpha. Cancer Cell Int. 24:2172024. View Article : Google Scholar : PubMed/NCBI | |
Bartolacci C, Andreani C, El-Gammal Y and Scaglioni PP: Lipid metabolism regulates oxidative stress and ferroptosis in RAS-Driven cancers: A perspective on cancer progression and therapy. Front Mol Biosci. 8:7066502021. View Article : Google Scholar : PubMed/NCBI | |
Diao J, Jia Y, Dai E, Liu J, Kang R, Tang D, Han L, Zhong Y and Meng L: Ferroptotic therapy in cancer: Benefits, side effects, and risks. Mol Cancer. 23:892024. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Song X, Li J, Zhang R, Yu C, Zhou Z, Liu J, Liao S, Klionsky DJ, Kroemer G, et al: Identification of HPCAL1 as a specific autophagy receptor involved in ferroptosis. Autophagy. 19:54–74. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang H and Sun C, Sun Q, Li Y, Zhou C and Sun C: Susceptibility of acute myeloid leukemia cells to ferroptosis and evasion strategies. Front Mol Biosci. 10:12757742023. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Kang R and Tang D: Signaling pathways and defense mechanisms of ferroptosis. FEBS J. 289:7038–7050. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cui J, Wang Y, Tian X, Miao Y, Ma L, Zhang C, Xu X, Wang J, Fang W and Zhang X: LPCAT3 is transcriptionally regulated by YAP/ZEB/EP300 and collaborates with ACSL4 and YAP to determine ferroptosis sensitivity. Antioxid Redox Signal. 39:491–511. 2023. View Article : Google Scholar : PubMed/NCBI | |
De Voeght A, Jaspers A, Beguin Y, Baron F and De Prijck B: Overview of the general management of acute leukemia for adults. Rev Med Liege. 76:470–475, (In French). PubMed/NCBI |