1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2020. CA Cancer J Clin. 70:7–30. 2020. View Article : Google Scholar : PubMed/NCBI
|
2
|
Giuliano AE, Edge SB and Hortobagyi GN:
Eighth edition of the AJCC cancer staging manual: Breast cancer.
Ann Surg Oncol. 25:1783–1785. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Jia H, Zheng Y, Wang P, Wei Z, Li X, Fu G
and Wang C: A retrospective study on the clinicopathologic
characteristics and outcomes of 179 cases of synchronous and
metachronous bilateral breast cancer in China. Clin Breast Cancer.
22:e341–e349. 2022. View Article : Google Scholar : PubMed/NCBI
|
4
|
Yin M, Zhang X, Zhu L, Niu S and Chen Q: A
case of simultaneous primary bilateral breast cancer and literature
review. J Xinxiang Med Coll. 7:623–625. 2018.(In Chinese).
|
5
|
Goldhirsch A, Ingle JN, Gelber RD, Coates
AS, Thürlimann B and Senn HJ; Panel members, : Thresholds for
therapies: Highlights of the St Gallen international expert
consensus on the primary therapy of early breast cancer 2009. Ann
Oncol. 20:1319–1329. 2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Chen S, Chen CM, Yu KD, Zhou RJ and Shao
ZM: Prognostic value of a positive-to-negative change in hormone
receptor status after neoadjuvant chemotherapy in patients with
hormone receptor-positive breast cancer. Ann Surg Oncol.
19:3002–3011. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Chen Y, Liu X, Yu K, Sun X, Xu S, Qiu P,
Lv Z, Zhang X, Guo A and Xu Y: Impact of hormone receptor, HER2,
and Ki-67 status conversions on survival after neoadjuvant
chemotherapy in breast cancer patients: A retrospective study. Ann
Transl Med. 10:932022. View Article : Google Scholar : PubMed/NCBI
|
8
|
Iwase H: Current topics and perspectives
on the use of aromatase inhibitors in the treatment of breast
cancer. Breast Cancer. 15:278–290. 2008. View Article : Google Scholar : PubMed/NCBI
|
9
|
Arora A, Shen R and Seshan VE: FACETS:
Fraction and allele-specific copy number estimates from tumor
sequencing. Methods Mol Biol. 2493:89–105. 2022. View Article : Google Scholar : PubMed/NCBI
|
10
|
Dees ND, Zhang Q, Kandoth C, Wendl MC,
Schierding W, Koboldt DC, Mooney TB, Callaway MB, Dooling D, Mardis
ER, et al: MuSiC: Identifying mutational significance in cancer
genomes. Genome Res. 22:1589–1598. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Sondka Z, Bamford S, Cole CG, Ward SA,
Dunham I and Forbes SA: The COSMIC cancer gene census: Describing
genetic dysfunction across all human cancers. Nat Rev Cancer.
18:696–705. 2018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Martínez-Jiménez F, Muiños F, Sentís I,
Deu-Pons J, Reyes-Salazar I, Arnedo-Pac C, Mularoni L, Pich O,
Bonet J, Kranas H, et al: A compendium of mutational cancer driver
genes. Nat Rev Cancer. 20:555–572. 2020. View Article : Google Scholar : PubMed/NCBI
|
13
|
Bailey MH, Tokheim C, Porta-Pardo E,
Sengupta S, Bertrand D, Weerasinghe A, Colaprico A, Wendl MC, Kim
J, Reardon B, et al: Comprehensive characterization of cancer
driver genes and mutations. Cell. 173:371–385.e18. 2018. View Article : Google Scholar : PubMed/NCBI
|
14
|
Tamborero D, Gonzalez-Perez A,
Perez-Llamas C, Deu-Pons J, Kandoth C, Reimand J, Lawrence MS, Getz
G, Bader GD, Ding L and Lopez-Bigas N: Comprehensive identification
of mutational cancer driver genes across 12 tumor types. Sci Rep.
3:26502013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Vogelstein B, Papadopoulos N, Velculescu
VE, Zhou S, Diaz LA Jr and Kinzler KW: Cancer genome landscapes.
Science. 339:1546–1558. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Huang KL, Liu YL, Hsu YY and Kuo WL:
Retrospective analysis of clinicopathological features and familial
cancer history of synchronous bilateral breast cancer. Healthcare
(Basel). 9:12032021. View Article : Google Scholar : PubMed/NCBI
|
18
|
Holm M, Tjønneland A, Balslev E and Kroman
N: Prognosis of synchronous bilateral breast cancer: A review and
meta-analysis of observational studies. Breast Cancer Res Treat.
146:461–475. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Amin MB, Greene FL, Edge SB, Compton CC,
Gershenwald JE, Brookland RK, Meyer L, Gress DM, Byrd DR and
Winchester DP: The eighth edition AJCC cancer staging manual:
Continuing to build a bridge from a population-based to a more
‘personalized’ approach to cancer staging. CA Cancer J Clin.
67:93–99. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Huo D, Melkonian S, Rathouz PJ, Khramtsov
A and Olopade OI: Concordance in histological and biological
parameters between first and second primary breast cancers. Cancer.
117:907–915. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Chaudary MA, Millis RR, Hoskins EO, Halder
M, Bulbrook RD, Cuzick J and Hayward JL: Bilateral primary breast
cancer: A prospective study of disease incidence. Br J Surg.
71:711–714. 1984. View Article : Google Scholar : PubMed/NCBI
|
22
|
Padmanabhan N, Subramanyan A and
Radhakrishna S: Synchronous bilateral breast cancers. J Clin Diagn
Res. 9:XC05–XC08. 2015.PubMed/NCBI
|
23
|
Londero AP, Bernardi S, Bertozzi S,
Angione V, Gentile G, Dri C, Minucci A, Caponnetto F and Petri R:
Synchronous and metachronous breast malignancies: A cross-sectional
retrospective study and review of the literature. Biomed Res Int.
2014:2507272014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Gong SJ, Rha SY, Jeung HC, Roh JK, Yang WI
and Chung HC: Bilateral breast cancer: Differential diagnosis using
histological and biological parameters. Jpn J Clin Oncol.
37:487–492. 2007. View Article : Google Scholar : PubMed/NCBI
|
25
|
Kan X: Bilateral primary breast cancer
(review). Foreign Medicine (Oncology). 1:15–18. 1980.(In
Chinese).
|
26
|
Robbins GF and Berg JW: Bilateral primary
breast cancer: A prospective clinicopathological study. Cancer.
17:1501–1527. 1964. View Article : Google Scholar : PubMed/NCBI
|
27
|
Aranda-Gutierrez A, Gomez-Picos A,
Ferrigno AS, Moncada-Madrazo M and Diaz-Perez H: Molecular subtype
discordance in a young woman with synchronous bilateral breast
cancer: A case report. Cureus. 12:e72422020.PubMed/NCBI
|
28
|
Dhadlie S, Whitfield J and Hendahewa R:
Synchronous bilateral breast cancer: A case report of heterogeneous
estrogen receptor status. Int J Surg Case Rep. 53:102–106. 2018.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Esclovon JW, Ponder M, Aydin N and Misra
S: Challenges of treating incidental synchronous bilateral breast
cancer with differing tumour biology. BMJ Case Rep.
2016:bcr20162162012016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Hayashi M, Yamamoto Y, Takata N and Iwase
H: A case of synchronous bilateral breast cancer with different
pathological responses to neoadjuvant chemotherapy with different
biological character. Springerplus. 2:2722013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Copur MS, Ramaekers R, Gauchan D, Crockett
D and Clark D: Synchronous bilateral breast cancer with discordant
histology. Oncology (Williston Park). 31:274–277.
3122017.PubMed/NCBI
|
32
|
Ojo AS, Shittu A, Amadife S, Jackson D,
Grantham M, Ali A and Sarma R: Synchronous bilateral breast cancer
with discordant receptor status: Treating one patient but two
diseases. World J Oncol. 14:224–229. 2023. View Article : Google Scholar : PubMed/NCBI
|
33
|
McCart Reed AE, Kutasovic JR, Lakhani SR
and Simpson PT: Invasive lobular carcinoma of the breast:
Morphology, biomarkers and 'omics. Breast Cancer Res. 17:122015.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Li J and Jiang Z: Chinese society of
clinical oncology breast cancer (CSCO BC) guidelines in 2022:
Stratification and classification. Cancer Biol Med. 19:769–773.
2022. View Article : Google Scholar : PubMed/NCBI
|
35
|
Montemurro F, Nuzzolese I and Ponzone R:
Neoadjuvant or adjuvant chemotherapy in early breast cancer? Expert
Opin Pharmacother. 21:1071–1082. 2020. View Article : Google Scholar : PubMed/NCBI
|
36
|
Hartman M, Czene K, Reilly M, Adolfsson J,
Bergh J, Adami HO, Dickman PW and Hall P: Incidence and prognosis
of synchronous and metachronous bilateral breast cancer. J Clin
Oncol. 25:4210–4216. 2007. View Article : Google Scholar : PubMed/NCBI
|
37
|
Pan B, Xu Y, Zhou YD, Yao R, Wu HW, Zhu
QL, Wang CJ, Mao F, Lin Y, Shen SJ and Sun Q: The prognostic
comparison among unilateral, bilateral, synchronous bilateral, and
metachronous bilateral breast cancer: A meta-analysis of studies
from recent decade (2008–2018). Cancer Med. 8:2908–2918. 2019.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Jobsen JJ, van der Palen J, Ong F,
Riemersma S and Struikmans H: Bilateral breast cancer, synchronous
and metachronous; differences and outcome. Breast Cancer Res Treat.
153:277–283. 2015. View Article : Google Scholar : PubMed/NCBI
|
39
|
Mejdahl MK, Wohlfahrt J, Holm M, Balslev
E, Knoop AS, Tjønneland A, Melbye M and Kroman N: Breast cancer
mortality in synchronous bilateral breast cancer patients. Br J
Cancer. 120:761–767. 2019. View Article : Google Scholar : PubMed/NCBI
|
40
|
Liu S, Nyström NN, Kelly JJ, Hamilton AM,
Fu Y and Ronald JA: Molecular imaging reveals a high degree of
cross-seeding of spontaneous metastases in a novel mouse model of
synchronous bilateral breast cancer. Mol Imaging Biol. 24:104–114.
2022. View Article : Google Scholar : PubMed/NCBI
|
41
|
Yang WT and Zhu XZ: The introduction of
2012 WHO classification of tumours of the breast. Zhonghua Bing Li
Xue Za Zhi. 42:78–80. 2013.(In Chinese). PubMed/NCBI
|
42
|
Ding S, Sun X, Lu S, Wang Z, Chen X and
Shen K: Association of molecular subtype concordance and survival
outcome in synchronous and metachronous bilateral breast cancer.
Breast. 57:71–79. 2021. View Article : Google Scholar : PubMed/NCBI
|
43
|
Zhang H and Shan CP: Research progress on
risk factors of bilateral primary breast cancer. Shandong Medical
Journal. 56:99–101. 2016.(In Chinese).
|
44
|
Wadasadawala T, Lewis S, Parmar V,
Budrukkar A, Gupta S, Nair N, Shet T, Badwe R and Sarin R:
Bilateral breast cancer after multimodality treatment: A report of
clinical outcomes in an asian population. Clin Breast Cancer.
18:e727–e737. 2018. View Article : Google Scholar : PubMed/NCBI
|
45
|
Miki Y, Swensen J, Shattuck-Eidens D,
Futreal PA, Harshman K, Tavtigian S, Liu Q, Cochran C, Bennett LM,
Ding W, et al: A strong candidate for the breast and ovarian cancer
susceptibility gene BRCA1. Science. 266:66–71. 1994. View Article : Google Scholar : PubMed/NCBI
|
46
|
Roy R, Chun J and Powell SN: BRCA1 and
BRCA2: Different roles in a common pathway of genome protection.
Nat Rev Cancer. 12:68–78. 2011. View Article : Google Scholar : PubMed/NCBI
|
47
|
Xu B, Kim St and Kastan MB: Involvement of
Brca1 in S-phase and G(2)-phase checkpoints after ionizing
irradiation. Mol Cell Biol. 21:3445–3450. 2001. View Article : Google Scholar : PubMed/NCBI
|
48
|
Deng CX: BRCA1: Cell cycle checkpoint,
genetic instability, DNA damage response and cancer evolution.
Nucleic Acids Res. 34:1416–1426. 2006. View Article : Google Scholar : PubMed/NCBI
|
49
|
Huen MSY, Sy SMH and Chen J: BRCA1 and its
toolbox for the maintenance of genome integrity. Nat Rev Mol Cell
Biol. 11:138–148. 2010. View Article : Google Scholar : PubMed/NCBI
|
50
|
Shao C, Wan J, Lam FC, Tang H, Marley AR,
Song Y, Miller C, Brown M, Han J and Adeboyeje G: A comprehensive
literature review and meta-analysis of the prevalence of pan-cancer
BRCA mutations, homologous recombination repair gene mutations, and
homologous recombination deficiencies. Environ Mol Mutagen.
63:308–316. 2022. View Article : Google Scholar : PubMed/NCBI
|
51
|
Kuchenbaecker KB, Hopper JL, Barnes DR,
Phillips KA, Mooij TM, Roos-Blom MJ, Jervis S, van Leeuwen FE,
Milne RL, Andrieu N, et al: Risks of breast, ovarian, and
contralateral breast cancer for BRCA1 and BRCA2 mutation carriers.
JAMA. 317:2402–2416. 2017. View Article : Google Scholar : PubMed/NCBI
|
52
|
Daly MB, Pilarski R, Yurgelun MB, Berry
MP, Buys SS, Dickson P, Domchek SM, Elkhanany A, Friedman S, Garber
JE, et al: NCCN guidelines insights: Genetic/familial High-risk
assessment: Breast, ovarian, and pancreatic, version 1.2020. J Natl
Compr Canc Netw. 18:380–391. 2020. View Article : Google Scholar : PubMed/NCBI
|
53
|
Wang YA, Jian JW, Hung CF, Peng HP, Yang
CF, Cheng HS and Yang AS: Germline breast cancer susceptibility
gene mutations and breast cancer outcomes. BMC Cancer. 18:3152018.
View Article : Google Scholar : PubMed/NCBI
|
54
|
Lydersen BK and Pettijohn DE:
Human-specific nuclear protein that associates with the polar
region of the mitotic apparatus: Distribution in a human/hamster
hybrid cell. Cell. 22:489–499. 1980. View Article : Google Scholar : PubMed/NCBI
|
55
|
Kilpivaara O, Rantanen M, Tamminen A,
Aittomäki K, Blomqvist C and Nevanlinna H: Comprehensive analysis
of NuMA variation in breast cancer. BMC Cancer. 8:712008.
View Article : Google Scholar : PubMed/NCBI
|
56
|
Vidi PA, Liu J, Salles D, Jayaraman S,
Dorfman G, Gray M, Abad P, Moghe PV, Irudayaraj JM, Wiesmüller L
and Lelièvre SA: NuMA promotes homologous recombination repair by
regulating the accumulation of the ISWI ATPase SNF2h at DNA breaks.
Nucleic Acids Res. 42:6365–6379. 2014. View Article : Google Scholar : PubMed/NCBI
|
57
|
Ohata H, Miyazaki M, Otomo R,
Matsushima-Hibiya Y, Otsubo C, Nagase T, Arakawa H, Yokota J,
Nakagama H, Taya Y and Enari M: NuMA is required for the selective
induction of p53 target genes. Mol Cell Biol. 33:2447–2457. 2013.
View Article : Google Scholar : PubMed/NCBI
|
58
|
Salvador Moreno N, Liu J, Haas KM, Parker
LL, Chakraborty C, Kron SJ, Hodges K, Miller LD, Langefeld C,
Robinson PJ, et al: The nuclear structural protein NuMA is a
negative regulator of 53BP1 in DNA double-strand break repair.
Nucleic Acids Res. 47:2703–2715. 2019. View Article : Google Scholar : PubMed/NCBI
|
59
|
Wells RA, Catzavelos C and Kamel-Reid S:
Fusion of retinoic acid receptor alpha to NuMA, the nuclear mitotic
apparatus protein, by a variant translocation in acute
promyelocytic leukaemia. Nat Genet. 17:109–113. 1997. View Article : Google Scholar : PubMed/NCBI
|
60
|
Yin S, Zhao S, Li J, Liu K, Ma X, Zhang Z,
Wang R, Tian J, Liu F, Song Y, et al: NUMA1 modulates apoptosis of
esophageal squamous cell carcinoma cells through regulating
ASK1-JNK signaling pathway. Cell Mol Life Sci. 80:2112023.
View Article : Google Scholar : PubMed/NCBI
|
61
|
Sebestyén E, Singh B, Miñana B, Pagès A,
Mateo F, Pujana MA, Valcárcel J and Eyras E: Large-scale analysis
of genome and transcriptome alterations in multiple tumors unveils
novel cancer-relevant splicing networks. Genome Res. 26:732–744.
2016. View Article : Google Scholar : PubMed/NCBI
|
62
|
Kammerer S, Roth RB, Hoyal CR, Reneland R,
Marnellos G, Kiechle M, Schwarz-Boeger U, Griffiths LR, Ebner F,
Rehbock J, et al: Association of the NuMA region on chromosome
11q13 with breast cancer susceptibility. Proc Natl Acad Sci USA.
102:2004–2009. 2005. View Article : Google Scholar : PubMed/NCBI
|
63
|
Boller S and Grosschedl R: The regulatory
network of B-cell differentiation: A focused view of early B-cell
factor 1 function. Immunol Rev. 261:102–115. 2014. View Article : Google Scholar : PubMed/NCBI
|
64
|
Fernandez-Jimenez N, Sklias A, Ecsedi S,
Cahais V, Degli-Esposti D, Jay A, Ancey PB, Woo HD,
Hernandez-Vargas H and Herceg Z: Lowly methylated region analysis
identifies EBF1 as a potential epigenetic modifier in breast
cancer. Epigenetics. 12:964–972. 2017. View Article : Google Scholar : PubMed/NCBI
|
65
|
Qiu Z, Guo W, Dong B, Wang Y, Deng P, Wang
C, Liu J, Zhang Q, Grosschedl R, Yu Z, et al: EBF1 promotes
triple-negative breast cancer progression by surveillance of the
HIF1α pathway. Proc Natl Acad Sci USA. 119:e21195181192022.
View Article : Google Scholar : PubMed/NCBI
|
66
|
Yan S, Jiao X, Zou H and Li K: Prognostic
significance of c-Met in breast cancer: A meta-analysis of 6010
cases. Diagn Pathol. 10:622015. View Article : Google Scholar : PubMed/NCBI
|
67
|
Ho-Yen CM, Jones JL and Kermorgant S: The
clinical and functional significance of c-Met in breast cancer: A
review. Breast Cancer Res. 17:522015. View Article : Google Scholar : PubMed/NCBI
|
68
|
Ahronowitz I, Xin W, Kiely R, Sims K,
MacCollin M and Nunes FP: Mutational spectrum of the NF2 gene: A
meta-analysis of 12 years of research and diagnostic laboratory
findings. Hum Mutat. 28:1–12. 2007. View Article : Google Scholar : PubMed/NCBI
|
69
|
Wang Z, Zhou Z, Wang Z and Cui Y: NF2
inhibits proliferation and cancer stemness in breast cancer. Open
Med (Wars). 15:302–308. 2020. View Article : Google Scholar : PubMed/NCBI
|
70
|
Gu F, Ma Y, Zhang J, Qin F and Fu L:
Function of Slit/Robo signaling in breast cancer. Front Med.
9:431–436. 2015. View Article : Google Scholar : PubMed/NCBI
|
71
|
Harburg G, Compton J, Liu W, Iwai N, Zada
S, Marlow R, Strickland P, Zeng YA and Hinck L: SLIT/ROBO2
signaling promotes mammary stem cell senescence by inhibiting Wnt
signaling. Stem Cell Reports. 3:385–393. 2014. View Article : Google Scholar : PubMed/NCBI
|
72
|
Hu L, Zhu YT, Qi C and Zhu YJ:
Identification of Smyd4 as a potential tumor suppressor gene
involved in breast cancer development. Cancer Res. 69:4067–4072.
2009. View Article : Google Scholar : PubMed/NCBI
|
73
|
Han S, Zou H, Lee JW, Han J, Kim HC, Cheol
JJ, Kim LS and Kim H: miR-1307-3p stimulates breast cancer
development and progression by targeting SMYD4. J Cancer.
10:441–448. 2019. View Article : Google Scholar : PubMed/NCBI
|
74
|
Xiang G, Wang S, Chen L, Song M, Song X,
Wang H, Zhou P, Ma X and Yu J: UBR5 targets tumor suppressor CDC73
proteolytically to promote aggressive breast cancer. Cell Death
Dis. 13:4512022. View Article : Google Scholar : PubMed/NCBI
|