|
1
|
Arnold M, Singh D, Laversanne M, Vignat J,
Vaccarella S, Meheus F, Cust AE, de Vries E, Whiteman DC and Bray
F: Global burden of cutaneous melanoma in 2020 and projections to
2040. JAMA Dermatol. 158:495–503. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Conforti C and Zalaudek I: Epidemiology
and risk factors of melanoma: A review. Dermatol Pract Concept. 11
(Suppl 1):e2021161S2021. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Dzwierzynski WW: Risk factors and
prevention of melanoma. Clin Plast Surg. 48:543–550. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Kahlon N, Doddi S, Yousif R, Najib S,
Sheikh T, Abuhelwa Z, Burmeister C and Hamouda DM: Treatments for
melanoma and mortality rate trends in the U.S., 1975 to 2019. JAMA
Netw Open. 5:e22452692022. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Reitmajer M, Leiter U, Nanz L, Amaral T,
Flatz L, Garbe C and Forschner A: Long-term survival of patients
with stage IV melanoma: Evaluation of 640 patients with melanoma
who entered stage IV between 2014 and 2017. J Cancer Res Clin
Oncol. 150:152024. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Saginala K and Barsouk A, Aluru JS, Rawla
P and Barsouk A: Epidemiology of melanoma. Med Sci (Basel).
9:632021.PubMed/NCBI
|
|
7
|
Switzer B, Piperno-Neumann S, Lyon J,
Buchbinder E and Puzanov I: Evolution of the treatment of stage IV
melanoma. Am Soc Clin Oncol Educ Book. 43:e3974782023. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Mancuso F, Lage S, Rasero J, Díaz-Ramón
JL, Apraiz A, Pérez-Yarza G, Ezkurra PA, Penas C, Sánchez-Diez A,
García-Vazquez MD, et al: Serum markers improve current prediction
of metastasis development in early-stage melanoma patients: A
machine learning-based study. Mol Oncol. 14:1705–1718. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Irurzun-Arana I, Asín-Prieto E,
Martín-Algarra S and Trocóniz IF: Predicting circulating biomarker
response and its impact on the survival of advanced melanoma
patients treated with adjuvant therapy. Sci Rep. 10:74782020.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Karagiannis P, Fittall M and Karagiannis
SN: Evaluation of biomarkers in melanoma. Front Oncol.
4:3832015.PubMed/NCBI
|
|
11
|
Paganelli A, Garbarino F, Toto P, Martino
GD, D'Urbano M, Auriemma M, Giovanni PD, Panarese F, Staniscia T,
Amerio P and Paganelli R: Serological panorama of cytokines in
cutaneous melanoma. Cancer Biomark. 26:333–342. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Zhao S, Wu D, Wu P, Wang Z and Huang J:
Serum IL-10 predicts worse outcome in cancer patients: A
meta-analysis. PLoS One. 10:e01395982015. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Ma YF, Chen C, Li D, Liu M, Lv ZW, Ji Y
and Xu J: Targeting of interleukin (IL)-17A inhibits PDL1
expression in tumor cells and induces anticancer immunity in an
estrogen receptor-negative murine model of breast cancer.
Oncotarget. 8:7614–7624. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Lin TH, Shao YY, Chan SY, Huang CY, Hsu CH
and Cheng AL: High serum transforming growth factor-β1 levels
predict outcome in hepatocellular carcinoma patients treated with
Sorafenib. Clin Cancer Res. 15:3678–3684. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Davey GE, Murmann P, Hoechli M, Tanaka T
and Heizmann CW: Calcium-dependent translocation of S100A11
requires tubulin filaments. Biochim Biophys Acta. 1498:220–232.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Petersson S, Shubbar E, Enerbäck L and
Enerbäck C: Expression patterns of S100 proteins in melanocytes and
melanocytic lesions. Melanoma Res. 19:215–225. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Oberholzer PA, Urosevic M, Steinert HC and
Dummer R: Baseline staging of melanoma with unknown primary site:
The value of serum s100 protein and positron emission tomography.
Dermatology. 217:351–355. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Beyeler M, Waldispuhl S, Strobel K,
Joller-Jemelka HI, Burg G and Dummer R: Detection of melanoma
relapse: First comparative analysis on imaging techniques versus
S100 protein. Dermatology. 213:187–191. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Hong IS: Stimulatory versus suppressive
effects of GM-CSF on tumor progression in multiple cancer types.
Exp Mol Med. 48:e2422016. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Viray H, Bradley WR, Schalper KA, Rimm DL
and Gould Rothberg BE: Marginal and joint distributions of S100,
HMB-45, and Melan-A across a large series of cutaneous melanomas.
Arch Pathol Lab Med. 137:1063–1073. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Weinstein D, Leininger J, Hamby C and
Safai B: Diagnostic and prognostic biomarkers in melanoma. J Clin
Aesthet Dermatol. 7:13–24. 2014.PubMed/NCBI
|
|
22
|
Dorizzi RM, Governa M, Tambuscio A,
Rizzotti P, Monese C, Minic J and Barisoni D: S100 protein
measurement in clinical practice. Clin Biochem. 38:197–198. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Rothberg BE, Moeder CB, Kluger H, Halaban
R, Elder DE, Murphy GF, Lazar A, Prieto V, Duncan LM and Rimm DL:
Nuclear to non-nuclear Pmel17/gp100 expression (HMB45 staining) as
a discriminator between benign and malignant melanocytic lesions.
Mod Pathol. 21:1121–1129. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Ramos-Herberth FI, Karamchandani J, Kim J
and Dadras SS: SOX10 immunostaining distinguishes desmoplastic
melanoma from excision scar. J Cutan Pathol. 37:944–952. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Nonaka D, Chiriboga L and Rubin BP: Sox10:
A pan-schwannian and melanocytic marker. Am J Surg Pathol.
32:1291–1298. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Vollmer RT: Use of Bayes rule and MIB-1
proliferation index to discriminate Spitz nevus from malignant
melanoma. Am J Clin Pathol. 122:499–505. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Bobos M: Histopathologic classification
and prognostic factors of melanoma: A 2021 update. Ital J Dermatol
Venerol. 156:300–321. 2021.PubMed/NCBI
|
|
28
|
Massi D, Brusa D, Merelli B, Ciano M,
Audrito V, Serra S, Buonincontri R, Baroni G, Nassini R, Minocci D,
et al: PD-L1 marks a subset of melanomas with a shorter overall
survival and distinct genetic and morphological characteristics.
Ann Oncol. 25:2433–2442. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Berghoff AS, Ricken G, Widhalm G, Rajky O,
Dieckmann K, Birner P, Bartsch R, Höller C and Preusser M:
Tumour-infiltrating lymphocytes and expression of programmed death
ligand 1 (PD-L1) in melanoma brain metastases. Histopathology.
66:289–299. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Chatterjee D and Bhattacharjee R:
Immunohistochemistry in dermatopathology and its relevance in
clinical practice. Indian Dermatol Online J. 9:234–244. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Yang K, Oak ASW, Slominski RM, Brożyna AA
and Slominski AT: Current molecular markers of melanoma and
treatment targets. Int J Mol Sci. 21:35352020. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Newton-Bishop J, Bishop DT and Harland M:
Melanoma genomics. Acta Derm Venereol. 100:adv001382020. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Sample A and He YY: Mechanisms and
prevention of UV-induced melanoma. Photodermatol Photoimmunol
Photomed. 34:13–24. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Slominski RM, Chen JY, Raman C and
Slominski AT: Photo-neuro-immuno-endocrinology: How the ultraviolet
radiation regulates the body, brain, and immune system. Proc Natl
Acad Sci USA. 121:e23083741212024. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Cole MA, Quan T, Voorhees JJ and Fisher
GJ: Extracellular matrix regulation of fibroblast function:
Redefining our perspective on skin aging. J Cell Commun Signal.
12:35–43. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Schneider LA, Raizner K, Wlaschek M,
Brenneisen P, Gethöffer K and Scharffetter-Kochanek K: UVA-1
exposure in vivo leads to an IL-6 surge within the skin. Exp
Dermatol. 26:830–832. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Zorina A, Zorin V, Kudlay D and Kopnin P:
Molecular mechanisms of changes in homeostasis of the dermal
extracellular matrix: Both involutional and mediated by ultraviolet
radiation. Int J Mol Sci. 23:66552022. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Naylor EC, Watson RE and Sherratt MJ:
Molecular aspects of skin ageing. Maturitas. 69:249–256. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Kripke ML, Cox PA, Alas LG and Yarosh DB:
Pyrimidine dimers in DNA initiate systemic immunosuppression in
UV-irradiated mice. Proc Natl Acad Sci USA. 89:7516–7520. 1992.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
González-Púmariega M, Vernhes Tamayo M and
Sánchez-Lamar Á: ISSN: 0717-196X simpletheoria@pehuen.chillan.ubiobio.cl.
Redalyc.org. 2009.https://www.redalyc.org/pdf/299/29917006006.pdf
|
|
41
|
Ravanat JL, Douki T and Cadet J: Direct
and indirect effects of UV radiation on DNA and its components. J
Photochem Photobiol B. 63:88–102. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Slominski RM, Sarna T, Płonka PM, Raman C,
Brożyna AA and Slominski AT: Melanoma, melanin, and melanogenesis:
The Yin and Yang relationship. Front Oncol. 12:8424962022.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Slominski A, Tobin DJ, Shibahara S and
Wortsman J: Melanin pigmentation in mammalian skin and its hormonal
regulation. Physiol Rev. 84:1155–1228. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Moan J, Dahlback A and Setlow RB:
Epidemiological support for an hypothesis for melanoma induction
indicating a role for UVA radiation. Photochem Photobiol.
70:243–247. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Mitra D, Luo X, Morgan A, Wang J, Hoang
MP, Lo J, Guerrero CR, Lennerz JK, Mihm MC, Wargo JA, et al: An
ultraviolet-radiation-independent pathway to melanoma
carcinogenesis in the red hair/fair skin background. Nature.
491:449–453. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Prota G: The chemistry of melanins and
melanogenesis. Fortschr Chem Org Naturst. 64:93–148.
1995.PubMed/NCBI
|
|
47
|
Del Bino S, Ito S, Sok J, Nakanishi Y,
Bastien P, Wakamatsu K and Bernerd F: Chemical analysis of
constitutive pigmentation of human epidermis reveals constant
eumelanin to pheomelanin ratio. Pigment Cell Melanoma Res.
28:707–717. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Napolitano A, Panzella L, Monfrecola G and
d'Ischia M: Pheomelanin-induced oxidative stress: Bright and dark
chemistry bridging red hair phenotype and melanoma. Pigment Cell
Melanoma Res. 27:721–733. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Li C, Kuai L, Cui R and Miao X:
Melanogenesis and the targeted therapy of melanoma. Biomolecules.
12:18742022. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Elder DE, Bastian BC, Cree IA, Massi D and
Scolyer RA: The 2018 World Health Organization classification of
cutaneous, mucosal, and uveal melanoma: Detailed analysis of 9
distinct subtypes defined by their evolutionary pathway. Arch
Pathol Lab Med. 144:500–522. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Podlipnik S, Potrony M and Puig S: Genetic
markers for characterization and prediction of prognosis of
melanoma subtypes: A 2021 update. Ital J Dermatol Venerol.
156:322–330. 2021.PubMed/NCBI
|
|
52
|
Comito G, Giannoni E, Di Gennaro P, Segura
CP, Gerlini G and Chiarugi P: Stromal fibroblasts synergize with
hypoxic oxidative stress to enhance melanoma aggressiveness. Cancer
Lett. 324:31–41. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Tímár J and Ladányi A: Molecular pathology
of skin melanoma: Epidemiology, differential diagnostics, prognosis
and therapy prediction. Int J Mol Sci. 23:53842022. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Seger R, Seger D, Reszka AA, Munar ES,
Eldar-Finkelman H, Dobrowolska G, Jensen AM, Campbell JS, Fischer
EH and Krebs EG: Overexpression of mitogen-activated protein kinase
kinase (MAPKK) and its mutants in NIH 3T3 cells. Evidence that
MAPKK involvement in cellular proliferation is regulated by
phosphorylation of serine residues in its kinase subdomains VII and
VIII. J Biol Chem. 269:25699–25709. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Van Raamsdonk CD, Griewank KG, Crosby MB,
Garrido MC, Vemula S, Wiesner T, Obenauf AC, Wackernagel W, Green
G, Bouvier N, et al: Mutations in GNA11 in uveal melanoma. N Engl J
Med. 363:2191–2199. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Patel SP, Kim DW, Lacey CL and Hwu P:
GNA11 mutation in a patient with cutaneous origin melanoma: A case
report. Medicine (Baltimore). 95:e23362016. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Demenais F, Mohamdi H, Chaudru V,
Goldstein AM, Newton Bishop JA, Bishop DT, Kanetsky PA, Hayward NK,
Gillanders E, Elder DE, et al: Association of MC1R variants and
host phenotypes with melanoma risk in CDKN2A mutation carriers: a
GenoMEL study. J Natl Cancer Inst. 102:1568–1583. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Florell SR, Meyer LJ, Boucher KM,
Porter-Gill PA, Hart M, Erickson J, Cannon-Albright LA, Pershing
LK, Harris RM, Samlowski WE, et al: Longitudinal assessment of the
nevus phenotype in a melanoma kindred. J Invest Dermatol.
123:576–582. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Helgadottir H, Höiom V, Tuominen R,
Nielsen K, Jönsson G, Olsson H and Hansson J: Germline CDKN2A
mutation status and survival in familial melanoma cases. J Natl
Cancer Inst. 108:djw1352016. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Rai K, Pilarski R, Boru G, Rehman M, Saqr
AH, Massengill JB, Singh A, Marino MJ, Davidorf FH, Cebulla CM and
H Abdel-Rahman M: Germline BAP1 alterations in familial uveal
melanoma. Genes Chromosomes Cancer. 56:168–174. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Colston K, Colston MJ and Feldman D:
1,25-Dihydroxyvitamin D3 and malignant melanoma: The presence of
receptors and inhibition of cell growth in culture. Endocrinology.
108:1083–1086. 1981. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Brożyna AA, Jóźwicki W and Slominski AT:
Decreased VDR expression in cutaneous melanomas as marker of tumor
progression: New data and analyses. Anticancer Res. 34:2735–2743.
2014.PubMed/NCBI
|
|
63
|
Fargnoli MC, Gandini S, Peris K,
Maisonneuve P and Raimondi S: MC1R variants increase melanoma risk
in families with CDKN2A mutations: A meta-analysis. Eur J Cancer.
46:1413–1420. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Guo R, Franco-Palacios M, Russell M,
Goddard L, Hassell L, Gillies E and Fung KM: Micropthalmia
transcription factor (MITF) as a diagnostic marker for metastatic
melanomas negative for other melanoma markers. Int J Clin Exp
Pathol. 6:1658–1664. 2013.PubMed/NCBI
|
|
65
|
Carreira S, Goodall J, Denat L, Rodriguez
M, Nuciforo P, Hoek KS, Testori A, Larue L and Goding CR: Mitf
regulation of Dia1 controls melanoma proliferation and
invasiveness. Genes Dev. 20:3426–3439. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Hartman ML and Czyz M: MITF in melanoma:
Mechanisms behind its expression and activity. Cell Mol Life Sci.
72:1249–1260. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Lister JA, Capper A, Zeng Z, Mathers ME,
Richardson J, Paranthaman K, Jackson IJ and Elizabeth Patton E: A
conditional zebrafish MITF mutation reveals MITF levels are
critical for melanoma promotion vs regression in vivo. J Invest
Dermatol. 134:133–140. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Hartman ML, Talar B, Noman MZ,
Gajos-Michniewicz A, Chouaib S and Czyz M: Gene expression
profiling identifies microphthalmia-associated transcription factor
(MITF) and Dickkopf-1 (DKK1) as regulators of
microenvironment-driven alterations in melanoma phenotype. PLoS
One. 9:e951572014. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Johannessen CM, Johnson LA, Piccioni F,
Townes A, Frederick DT, Donahue MK, Narayan R, Flaherty KT, Wargo
JA, Root DE and Garraway LA: A melanocyte lineage program confers
resistance to MAP kinase pathway inhibition. Nature. 504:138–142.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Kaur A, Ecker BL, Douglass SM, Kugel CH
III, Webster MR, Almeida FV, Somasundaram R, Hayden J, Ban E,
Ahmadzadeh H, et al: Remodeling of the collagen matrix in aging
skin promotes melanoma metastasis and affects immune cell motility.
Cancer Discov. 9:64–81. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Kaur A, Webster MR, Marchbank K, Behera R,
Ndoye A, Kugel CH III, Dang VM, Appleton J, O'Connell MP, Cheng P,
et al: sFRP2 in the aged microenvironment drives melanoma
metastasis and therapy resistance. Nature. 532:250–254. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Heidenreich B, Nagore E, Rachakonda PS,
Garcia-Casado Z, Requena C, Traves V, Becker J, Soufir N, Hemminki
K and Kumar R: Telomerase reverse transcriptase promoter mutations
in primary cutaneous melanoma. Nat Commun. 5:34012014. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Holderfield M, Deuker MM, McCormick F and
McMahon M: Targeting RAF kinases for cancer therapy: BRAF-mutated
melanoma and beyond. Nat Rev Cancer. 14:455–467. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Davies H, Bignell GR, Cox C, Stephens P,
Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W,
et al: Mutations of the BRAF gene in human cancer. Nature.
417:949–954. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Menzies AM, Haydu LE, Visintin L, Carlino
MS, Howle JR, Thompson JF, Kefford RF, Scolyer RA and Long GV:
Distinguishing clinicopathologic features of patients with V600E
and V600K BRAF-mutant metastatic melanoma. Clin Cancer Res.
18:3242–3249. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Lee JH, Choi JW and Kim YS: Frequencies of
BRAF and NRAS mutations are different in histological types and
sites of origin of cutaneous melanoma: a meta-analysis. Br J
Dermatol. 164:776–784. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Jakob JA, Bassett RL Jr, Ng CS, Curry JL,
Joseph RW, Alvarado GC, Rohlfs ML, Richard J, Gershenwald JE, Kim
KB, et al: NRAS mutation status is an independent prognostic factor
in metastatic melanoma. Cancer. 118:4014–4023. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Carvajal RD, Antonescu CR, Wolchok JD,
Chapman PB, Roman RA, Teitcher J, Panageas KS, Busam KJ,
Chmielowski B, Lutzky J, et al: KIT as a therapeutic target in
metastatic melanoma. JAMA. 305:23272011. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Escandell I, Martín JM and Jordá E: Novel
immunologic approaches to melanoma treatment. Actas Dermosifiliogr.
108:708–720. 2017.(In English, Spanish). View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Freeman GJ, Long AJ, Iwai Y, Bourque K,
Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne
MC, et al: Engagement of the PD-1 immunoinhibitory receptor by a
novel B7 family member leads to negative regulation of lymphocyte
activation. J Exp Med. 192:1027–1034. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Pistillo MP, Fontana V, Morabito A, Dozin
B, Laurent S, Carosio R, Banelli B, Ferrero F, Spano L, Tanda E, et
al: Soluble CTLA-4 as a favorable predictive biomarker in
metastatic melanoma patients treated with ipilimumab: An Italian
melanoma intergroup study. Cancer Immunol Immunother. 68:97–107.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Slominski RM, Kim TK, Janjetovic Z,
Brożyna AA, Podgorska E, Dixon KM, Mason RS, Tuckey RC, Sharma R,
Crossman DK, et al: Malignant melanoma: An overview, new
perspectives, and vitamin D signaling. Cancers Basel). 16:22622024.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Marsavela G, Aya-Bonilla CA, Warkiani ME,
Gray ES and Ziman M: Melanoma circulating tumor cells: Benefits and
challenges required for clinical application. Cancer Lett. 424:1–8.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Shoji Y, Bustos MA, Gross R and Hoon DSB:
Recent developments of circulating tumor cell analysis for
monitoring cutaneous melanoma patients. Cancers (Basel).
14:8592022. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Aya-Bonilla CA, Morici M, Hong X, McEvoy
AC, Sullivan RJ, Freeman J, Calapre L, Khattak MA, Meniawy T,
Millward M, et al: Detection and prognostic role of heterogeneous
populations of melanoma circulating tumour cells. Br J Cancer.
122:1059–1067. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Lin SY, Chang SC, Lam S, Irene Ramos R,
Tran K, Ohe S, Salomon MP, Bhagat AAS, Teck Lim C, Fischer TD, et
al: Prospective molecular profiling of circulating tumor cells from
patients with melanoma receiving combinatorial immunotherapy. Clin
Chem. 66:169–177. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Li J, Fu W, Zhang W and Li P: High number
of circulating tumor cells predicts poor survival of cutaneous
melanoma patients in China. Med Sci Monit. 24:324–331. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Hoon DS, Wang Y, Dale PS, Conrad AJ,
Schmid P, Garrison D, Kuo C, Foshag LJ, Nizze AJ and Morton DL:
Detection of occult melanoma cells in blood with a multiple-marker
polymerase chain reaction assay. J Clin Oncol. 13:2109–2116. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Koyanagi K, O'Day SJ, Gonzalez R, Lewis K,
Robinson WA, Amatruda TT, Kuo C, Wang HJ, Milford R, Morton DL and
Hoon DS: Microphthalmia transcription factor as a molecular marker
for circulating tumor cell detection in blood of melanoma patients.
Clin Cancer Res. 12:1137–1143. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Koyanagi K, O'Day SJ, Boasberg P, Atkins
MB, Wang HJ, Gonzalez R, Lewis K, Thompson JA, Anderson CM, Lutzky
J, et al: Serial monitoring of circulating tumor cells predicts
outcome of induction biochemotherapy plus maintenance biotherapy
for metastatic melanoma. Clin Cancer Res. 16:2402–2408. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Kang YT, Mutukuri A, Hadlock T, Fairbairn
H, Carle TR, Fouladdel S, Murlidhar V, Kramer A, De Silva Reguera
M, Azizi E, et al: Isolation of circulating tumor cells to diagnose
melanoma and evaluate the efficacy of surgical resection using
melanoma-specific microsystem. Adv Nanobiomed Res. 2:21000832022.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Lee RC, Feinbaum RL and Ambros V: The C.
elegans heterochronic gene lin-4 encodes small RNAs with antisense
complementarity to lin-14. Cell. 75:843–854. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Peng Q and Wang J: Non-coding RNAs in
melanoma: Biological functions and potential clinical applications.
Mol Ther Oncolytics. 22:219–231. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Nakahara S, Fukushima S, Okada E, Morinaga
J, Kubo Y, Tokuzumi A, Matsumoto S, Tsuruta-Kadohisa M, Kimura T,
Kuriyama H, et al: MicroRNAs that predict the effectiveness of
anti-PD-1 therapies in patients with advanced melanoma. J Dermatol
Sci. 97:77–79. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Dror S, Sander L, Schwartz H, Sheinboim D,
Barzilai A, Dishon Y, Apcher S, Golan T, Greenberger S, Barshack I,
et al: Melanoma miRNA trafficking controls tumour primary niche
formation. Nat Cell Biol. 18:1006–1017. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Li Q, Zhang D, Wang Y, Sun P, Hou X,
Larner J, Xiong W and Mi J: MiR-21/Smad 7 signaling determines
TGF-β1-induced CAF formation. Sci Rep. 3:20382013. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Heinemann A, Zhao F, Pechlivanis S, Eberle
J, Steinle A, Diederichs S, Schadendorf D and Paschen A: Tumor
suppressive microRNAs miR-34a/c control cancer cell expression of
ULBP2, a stress-induced ligand of the natural killer cell receptor
NKG2D. Cancer Res. 72:460–471. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Segura MF, Hanniford D, Menendez S, Reavie
L, Zou X, Alvarez-Diaz S, Zakrzewski J, Blochin E, Rose A,
Bogunovic D, et al: Aberrant miR-182 expression promotes melanoma
metastasis by repressing FOXO3 and microphthalmia-associated
transcription factor. Proc Natl Acad Sci USA. 106:1814–1819. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Liu S, Tetzlaff MT, Wang T, Yang R, Xie L,
Zhang G, Krepler C, Xiao M, Beqiri M, Xu W, et al: miR-200c/Bmi1
axis and epithelial-mesenchymal transition contribute to acquired
resistance to BRAF inhibitor treatment. Pigment Cell Melanoma Res.
28:431–441. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Wolchok JD, Chiarion-Sileni V, Gonzalez R,
Grob JJ, Rutkowski P, Lao CD, Cowey CL, Schadendorf D, Wagstaff J,
Dummer R, et al: Long-term outcomes with nivolumab plus ipilimumab
or nivolumab alone versus ipilimumab in patients with advanced
melanoma. J Clin Oncol. 40:127–137. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Nguyen MT, Luo YH, Li AL, Tsai JC, Wu KL,
Chung PJ and Ma N: miRNA as a Modulator of Immunotherapy and Immune
Response in Melanoma. Biomolecules. 11:16482021. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Fawzy MS, Ibrahiem AT, Bayomy NA, Makhdoom
AK, Alanazi KS, Alanazi AM, Mukhlef AM and Toraih EA: MicroRNA-155
and disease-related immunohistochemical parameters in cutaneous
melanoma. Diagnostics (Basel). 13:12052023. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Martinez-Usatorre A, Sempere LF, Carmona
SJ, Carretero-Iglesia L, Monnot G, Speiser DE, Rufer N, Donda A,
Zehn D, Jandus C and Romero P: MicroRNA-155 expression is enhanced
by T-cell receptor stimulation strength and correlates with
improved tumor control in melanoma. Cancer Immunol Res.
7:1013–1024. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Dong L, Tian X, Zhao Y, Tu H, Wong A and
Yang Y: The roles of miRNAs (MicroRNAs) in melanoma immunotherapy.
Int J Mol Sci. 23:147752022. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Scheau C, Draghici C, Ilie MA, Lupu M,
Solomon I, Tampa M, Georgescu SR, Caruntu A, Constantin C, Neagu M
and Caruntu C: Neuroendocrine factors in melanoma pathogenesis.
Cancers (Basel). 13:22772021. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Slominski RM, Raman C, Chen JY and
Slominski AT: How cancer hijacks the body's homeostasis through the
neuroendocrine system. Trends Neurosci. 46:263–275. 2013.
View Article : Google Scholar : PubMed/NCBI
|