1
|
Sung JJ, Lau JY, Goh KL and Leung WK:
Increasing incidence of CRC in Asia: implications for screening.
Lancet Oncol. 6:871–876. 2005. View Article : Google Scholar
|
2
|
Kjeldsen L, Johnsen AH, Sengeløv H and
Borregaard N: Isolation and primary structure of NGAL, a novel
protein associated with human neutrophil gelatinase. J Biol Chem.
268:10425–10432. 1993.PubMed/NCBI
|
3
|
Zhang H, Xu L, Xiao D, Xie J, Zeng H, Wang
Z, Zhang X, Niu Y, Shen Z, Shen J, Wu X and Li E: Upregulation of
neutrophil gelatinase-associated lipocalin in oesophageal squamous
cell carcinoma: significant correlation with cell differentiation
and tumour invasion. J Clin Pathol. 60:555–561. 2007. View Article : Google Scholar
|
4
|
Stoesz SP, Friedl A, Haag JD, Lindstrom
MJ, Clark GM and Gould MN: Heterogeneous expression of the
lipocalin NGAL in primary breast cancers. Int J Cancer. 79:565–572.
1998. View Article : Google Scholar : PubMed/NCBI
|
5
|
Furutani M, Arii S, Mizumoto M, Kato M and
Imamura M: Identification of a neutrophil gelatinase-associated
lipocalin mRNA in human pancreatic cancers using a modified signal
sequence trap method. Cancer Lett. 122:209–214. 1998. View Article : Google Scholar
|
6
|
Bartsch S and Tschesche H: Cloning and
expression of human neutrophil lipocalin cDNA derived from bone
marrow and ovarian cancer cells. FEBS Lett. 357:255–259. 1995.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Woo HJ, Park JC, Bae CH, Song SY, Lee HM
and Kim YD: Up-regulation of neutrophil gelatinase-associated
lipocalin in cholesteatoma. Acta Otolaryngol. 21:1–6. 2008.
|
8
|
Xu LY, Li EM, Xiong HQ, Shen ZY and Cai
WJ: Study of neutrophil gelatinase-associated lipocalin (NGAL) gene
overexpression in the progress of malignant transformation of human
immortalized esophageal epithelial cell. Prog Biochem Biophys.
28:839–843. 2001.
|
9
|
Li EM, Xu LY, Cai WJ, Xiong HQ, Shen ZY
and Zeng Y: Functions of neutrophil gelatinase-associated lipocalin
in the esophageal carcinoma cell line SHEEC. Acta Biochim Biophys
Sin. 35:247–254. 2003.PubMed/NCBI
|
10
|
Lin JL, Xu LY, Li EM, Cai WJ, Niu YD, Fang
KY, Xiong HQ, Shen ZY and Zeng Y: Antisense blocking of NGAL gene
expression affects the microfilament cytoskeleton in SHEEC
esophageal cancer cells. Prog Biochem Biophys. 31:409–415.
2004.
|
11
|
Nielsen BS, Borregaard N, Bundgaard JR,
Timshel S, Sehested M and Kjeldsen L: Induction of NGAL synthesis
in epithelial cells of human colorectal neoplasia and inflammatory
bowel diseases. Gut. 38:414–420. 1996. View Article : Google Scholar : PubMed/NCBI
|
12
|
Lee HJ, Lee EK, Lee KJ, Hong SW, Yoon Y
and Kim JS: Ectopic expression of neutrophil gelatinase-associated
lipocalin suppresses the invasion and liver metastasis of colon
cancer cells. Int J Cancer. 118:2490–2497. 2006. View Article : Google Scholar
|
13
|
Flower DR: Beyond the superfamily: the
lipocalin receptors. Biochim Biophys Acta. 1482:327–336. 2000.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Goetz DH, Holmes MA, Borregaard N, Bluhm
ME, Raymond KN and Strong RK: The neutrophil lipocalin NGAL is a
bacteriostatic agent that interferes with siderophore-mediated iron
acquisition. Mol Cell. 10:1033–1043. 2002. View Article : Google Scholar : PubMed/NCBI
|
15
|
Yang J, Mori K, Li JY and Barasch J: Iron,
lipocalin, and kidney epithelia. Am J Physiol Renal Physiol.
285:F9–F18. 2003. View Article : Google Scholar : PubMed/NCBI
|
16
|
Yang J, Goetz D, Li J-Y, Wang W, Mori K,
Setlik D, Du T, Erdjument-Bromage H, Tempst P, Strong R and Barasch
J: An iron delivery pathway mediated by a lipocalin. Mol Cell.
10:1045–1056. 2002. View Article : Google Scholar : PubMed/NCBI
|
17
|
Devireddy LR, Gazin C, Zhu X and Green MR:
A cell-surface receptor for lipocalin 24p3 selectively mediates
apoptosis and iron uptake. Cell. 123:1293–1305. 2005. View Article : Google Scholar : PubMed/NCBI
|
18
|
Mori K, Lee HT, Rapoport D, Drexler IR,
Foster K, Yang J, Schmidt-Ott KM, Chen X, Li JY, Weiss S, Mishra J,
Cheema FH, Markowitz G, Suganami T, Sawai K, Mukoyama M, Kunis C,
D’Agati V, Devarajan P and Barasch J: Endocytic delivery of
lipocalin-siderophore-iron complex rescues the kidney from
ischemia-reperfusion injury. J Clin Invest. 115:610–621. 2005.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Wurzelmann JI, Silver A, Schreinemachers
DM, Sandler RS and Everson RB: Iron intake and the risk of
colorectal cancer. Cancer Epidemiol Biomarkers Prev. 5:503–507.
1996.PubMed/NCBI
|
20
|
Stone WL, Krishnan K, Campbell SE, Qui M,
Whaley SG and Yang H: Tocopherols and the treatment of colon
cancer. Ann N Y Acad Sci. 1031:223–233. 2004. View Article : Google Scholar : PubMed/NCBI
|
21
|
Sawa T, Akaike T, Kida K, Fukushima Y,
Takagi K and Maeda H: Lipid peroxyl radicals from oxidized oils and
heme-iron: implication of a high-fat diet in colon carcinogenesis.
Cancer Epidemiol Biomarkers Prev. 7:1007–1012. 1998.PubMed/NCBI
|
22
|
Lund EK, Fairweather-Tait SJ, Wharf SG and
Johnson IT: Chronic exposure to high levels of dietary iron
fortification increases lipid peroxidation in the mucosa of the rat
large intestine. J Nutr. 131:2928–2931. 2001.PubMed/NCBI
|
23
|
Kuratko CN: Decrease of manganese
superoxide dismutase activity in rats fed high levels of iron
during colon carcinogenesis. Food Chem Toxicol. 36:819–824. 1998.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Valko M, Rhodes CJ, Moncol J, Izakovic M
and Mazur M: Free radicals, metals and antioxidants in oxidative
stress-induced cancer. Chem Biol Interact. 160:1–40. 2006.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Yan L, Borregaard N, Kjeldsen L and Moses
MA: The high molecular weight urinary matrix metalloproteinase
(MMP) activity is a complex of gelatinase B/MMP-9 and neutrophil
gelatinase-associated lipocalin (NGAL). J Biol Chem.
276:37258–37265. 2001. View Article : Google Scholar : PubMed/NCBI
|
26
|
Tschesche H, Zölzer V, Triebel S and
Bartsch S: The human neutrophil lipocalin supports the allosteric
activation of matrix metalloproteinases. Eur J Biochem.
268:1918–1928. 2001. View Article : Google Scholar : PubMed/NCBI
|
27
|
Fernández CA, Yan L, Louis G, Yang J,
Kutok JL and Moses MA: The matrix metalloproteinase-9/neutrophil
gelatinase-associated lipocalin complex plays a role in breast
tumor growth and is present in the urine of breast cancer patients.
Clin Cancer Res. 11:5390–5395. 2005.
|
28
|
Klonisch T, Bialek J, Radestock Y,
Hoang-Vu C and Hombach-Klonisch S: Relaxin-like ligand-receptor
systems are autocrine/paracrine effectors in tumor cells and
modulate cancer progression and tissue invasiveness. Adv Exp Med
Biol. 612:104–118. 2007. View Article : Google Scholar
|
29
|
Armstrong AP, Miller RE, Jones JC, Zhang
J, Keller ET and Dougall WC: RANKL acts directly on RANK-expressing
prostate tumor cells and mediates migration and expression of tumor
metastasis genes. Prostate. 68:92–104. 2008. View Article : Google Scholar : PubMed/NCBI
|
30
|
Koshiba T, Hosotani R, Miyamoto Y, Ida J,
Tsuji S, Nakajima S, Kawaguchi M, Kobayashi H, Doi R, Hori T, Fujii
N and Imamura M: Expression of stromal cell-derived factor 1 and
CXCR4 ligand receptor system in pancreatic cancer: a possible role
for tumor progression. Clin Cancer Res. 6:3530–3535.
2000.PubMed/NCBI
|