1
|
Parkin DM, Bray F, Ferlay J and Pisani P:
Global cancer statistics, 2002. CA Cancer J Clin. 55:74–108. 2005.
View Article : Google Scholar
|
2
|
Willett W: The search for the causes of
breast and colon cancer. Nature. 338:389–394. 1989. View Article : Google Scholar : PubMed/NCBI
|
3
|
Hebert JR, Landon J and Miller DR:
Consumption of meat and fruit in relation to oral and esophageal
cancer: a cross-national study. Nutr Cancer. 19:169–179. 1993.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Block G, Patterson B and Subar A: Fruit,
vegetables and cancer prevention: a review of the epidemiological
evidence. Nutr Cancer. 18:1–29. 1992. View Article : Google Scholar : PubMed/NCBI
|
5
|
Boyle P, Zaridze DG and Smans M:
Descriptive epidemiology of colorectal cancer. Int J Cancer.
36:9–18. 1985. View Article : Google Scholar
|
6
|
Lin HJ, Probst-Hensch NM, Louie AD, et al:
Glutathione transferase null genotype, broccoli and lower
prevalence of colorectal adenomas. Cancer Epidemiol Biomarkers
Prev. 7:647–652. 1998.
|
7
|
Hecht SS: Chemoprevention by
isothiocyanates. J Cell Biochem Suppl. 22:195–209. 1995. View Article : Google Scholar
|
8
|
Munday R, Mhawech-Fauceglia P, Munday CM,
et al: Inhibition of urinary bladder carcinogenesis by broccoli
sprouts. Cancer Res. 68:1593–1600. 2008. View Article : Google Scholar : PubMed/NCBI
|
9
|
Higdon JV, Delage B, Williams DE and
Dashwood RH: Cruciferous vegetables and human cancer risk:
epidemiologic evidence and mechanistic basis. Pharmacol Res.
55:224–236. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Leonard TB, Popp JA, Graichen ME and Dent
JG: alpha-Naphthylisothiocyanate induced alterations in hepatic
drug metabolizing enzymes and liver morphology: implications
concerning anticarcinogenesis. Carcinogenesis. 2:473–482. 1981.
View Article : Google Scholar
|
11
|
Guo Z, Smith TJ, Wang E, Eklind KI, Chung
FL and Yang CS: Structure-activity relationships of arylalkyl
isothiocyanates for the inhibition of
4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone metabolism and the
modulation of xenobiotic-metabolizing enzymes in rats and mice.
Carcinogenesis. 14:1167–1173. 1993. View Article : Google Scholar
|
12
|
Zhang Y and Talalay P: Anticarcinogenic
activities of organic isothiocyanates: chemistry and mechanisms.
Cancer Res. 54:S1976–S1981. 1994.PubMed/NCBI
|
13
|
Guo Z, Smith TJ, Wang E, et al: Effects of
phenethyl isothiocyanate, a carcinogenesis inhibitor, on
xenobiotic-metabolizing enzymes and nitrosamine metabolism in rats.
Carcinogenesis. 13:2205–2210. 1992. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kinae N, Masuda H, Shin IS, Furugori M and
Shimoi K: Functional properties of wasabi and horseradish.
Biofactors. 13:265–269. 2000. View Article : Google Scholar : PubMed/NCBI
|
15
|
Morimitsu Y, Hayashi K, Nakagawa Y, Horio
F, Uchida K and Osawa T: Antiplatelet and anticancer
isothiocyanates in Japanese domestic horseradish, wasabi.
Biofactors. 13:271–276. 2000. View Article : Google Scholar : PubMed/NCBI
|
16
|
Watanabe M, Ohata M, Hayakawa S, et al:
Identification of 6-methylsulfinylhexyl isothiocyanate as an
apoptosis-inducing component in wasabi. Phytochemistry. 62:733–739.
2003. View Article : Google Scholar : PubMed/NCBI
|
17
|
Nomura T, Shinoda S, Yamori T, et al:
Selective sensitivity to wasabi-derived 6-(methylsulfinyl)hexyl
isothiocyanate of human breast cancer and melanoma cell lines
studied in vitro. Cancer Detect Prev. 29:155–160. 2005. View Article : Google Scholar : PubMed/NCBI
|
18
|
Morimitsu Y, Nakagawa Y, Hayashi K, et al:
A sulforaphane analogue that potently activates the Nrf2-dependent
detoxification pathway. J Biol Chem. 277:3456–3463. 2002.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Thimmulappa RK, Mai KH, Srisuma S, Kensler
TW, Yamamoto M and Biswal S: Identification of Nrf2-regulated genes
induced by the chemopreventive agent sulforaphane by
oligonucleotide microarray. Cancer Res. 62:5196–5203.
2002.PubMed/NCBI
|
20
|
Bird RP: Observation and quantification of
aberrant crypts in the murine colon treated with a colon
carcinogen: preliminary findings. Cancer Lett. 37:147–151. 1987.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Yamada Y, Yoshimi N, Hirose Y, et al:
Suppression of occurrence and advancement of
beta-catenin-accumulated crypts, possible premalignant lesions of
colon cancer, by selective cyclooxygenase-2 inhibitor, celecoxib.
Jpn J Cancer Res. 92:617–623. 2001. View Article : Google Scholar
|
22
|
Mori Y, Yamazaki H, Toyoshi K, et al:
Mutagenic activation of carcinogenic N-nitrosopropylamines by rat
liver: evidence for a cytochrome P-450-dependent reaction.
Carcinogenesis. 6:415–420. 1985. View Article : Google Scholar : PubMed/NCBI
|
23
|
Laemmli UK: Cleavage of structural
proteins during the assembly of the head of bacteriophage T4.
Nature. 227:680–685. 1970. View
Article : Google Scholar : PubMed/NCBI
|
24
|
Towbin H, Staehelin T and Gordon J:
Electrophoretic transfer of proteins from polyacrylamide gels to
nitrocellulose sheets: procedure and some applications. Proc Natl
Acad Sci USA. 76:4350–4354. 1979. View Article : Google Scholar : PubMed/NCBI
|
25
|
Heirwegh KP, van de Vijver M and Fevery J:
Assay and properties of dititonin-activated bilirubin uridine
diphosphate glucuronyltransferase from rat liver. Biochem J.
129:605–618. 1972.PubMed/NCBI
|
26
|
Isselbacher KJ, Chrabas MF and Quinn RC:
The solubilization and partial purification of a glucuronyl
transferase from rabbit liver microsomes. J Biol Chem.
237:3033–3036. 1962.PubMed/NCBI
|
27
|
Matern H, Heinemann H and Matern S:
Radioassay of UDP-glucuronosyltransferase activities toward
endogenous substrates using labeled UDP-glucuronic acid and an
organic solvent extraction procedure. Anal Biochem. 219:182–188.
1994. View Article : Google Scholar
|
28
|
Corpet DE and Tache S: Most effective
colon cancer chemopreventive agents in rats: a systematic review of
aberrant crypt foci and tumor data, ranked by potency. Nutr Cancer.
43:1–21. 2002. View Article : Google Scholar : PubMed/NCBI
|
29
|
Corpet DE, Stamp D, Medline A, Minkin S,
Archer MC and Bruce WR: Promotion of colonic microadenoma growth in
mice and rats fed cooked sugar or cooked casein and fat. Cancer
Res. 50:6955–6958. 1990.PubMed/NCBI
|
30
|
Pretlow TP, O’Riordan MA, Somich GA, Amini
SB and Pretlow TG: Aberrant crypts correlate with tumor incidence
in F344 rats treated with azoxymethane and phytate. Carcinogenesis.
13:1509–1512. 1992. View Article : Google Scholar : PubMed/NCBI
|
31
|
Yamada Y, Yoshimi N, Hirose Y, et al:
Sequential analysis of morphological and biological properties of
beta-catenin-accumulated crypts, provable premalignant lesions
independent of aberrant crypt foci in rat colon carcinogenesis.
Cancer Res. 61:1874–1878. 2001.
|
32
|
Hirose Y, Kuno T, Yamada Y, et al:
Azoxymethane-induced beta-catenin-accumulated crypts in colonic
mucosa of rodents as an intermediate biomarker for colon
carcinogenesis. Carcinogenesis. 24:107–111. 2003. View Article : Google Scholar : PubMed/NCBI
|
33
|
Yamada Y, Yoshimi N, Hirose Y, et al:
Frequent beta-catenin gene mutations and accumulations of the
protein in the putative preneoplastic lesions lacking macroscopic
aberrant crypt foci appearance, in rat colon carcinogenesis. Cancer
Res. 60:3323–3327. 2000.
|
34
|
Yamada Y, Oyama T, Hirose Y, et al:
beta-Catenin mutation is selected during malignant transformation
in colon carcinogenesis. Carcinogenesis. 24:91–97. 2003. View Article : Google Scholar : PubMed/NCBI
|
35
|
Cohen SM and Ellwein LB: Cell
proliferation in carcinogenesis. Science. 249:1007–1011. 1990.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Yano T, Yajima S, Virgona N, et al: The
effect of 6-methylthiohexyl isothiocyanate isolated from Wasabia
japonica (wasabi) on
4-(methylnitrosamino)-1-(3-pyridyl)-1-buatnone-induced lung
tumorigenesis in mice. Cancer Lett. 155:115–120. 2000.PubMed/NCBI
|
37
|
Surh YJ: Cancer chemoprevention with
dietary phytochemicals. Nat Rev Cancer. 3:768–780. 2003. View Article : Google Scholar : PubMed/NCBI
|
38
|
Myzak MC and Dashwood RH: Chemoprotection
by sulforaphane: keep one eye beyond Keap1. Cancer Lett.
233:208–218. 2006. View Article : Google Scholar : PubMed/NCBI
|
39
|
Mori Y, Koide A, Fuwa K and Kobayashi Y:
N-benzylimidazole for preparation of S9 fraction with
multi-induction of metabolizing enzymes in short-term genotoxicity
assays. Mutagenesis. 16:479–486. 2001. View Article : Google Scholar : PubMed/NCBI
|
40
|
Degawa M, Ueno H, Miura S, Ohta A and
Namiki M: A simple method for assessment of rat cytochrome P-448
isozymes responsible for the mutagenic activation of carcinogenic
chemicals. Mutat Res. 203:333–338. 1988. View Article : Google Scholar : PubMed/NCBI
|
41
|
Mori Y, Tatematsu K, Koide A, Sugie S,
Tanaka T and Mori H: Modification by curcumin of mutagenic
activation of carcinogenic N-nitrosamines by extrahepatic
cytochromes P-450 2B1 and 2E1 in rats. Cancer Sci. 97:896–904.
2006. View Article : Google Scholar : PubMed/NCBI
|
42
|
Mori Y, Koide A, Kobayashi Y, Morimura K,
Kaneko M and Fukushima S: Effect of ethanol treatment on metabolic
activation and detoxification of esophagus carcinogenic
N-nitrosamines in rat liver. Mutagenesis. 17:251–256. 2002.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Sohn OS, Ishizaki H, Yang CS and Fiala ES:
Metabolism of azoxymethane, methylazoxymethanol and
N-nitrosodimethylamine by cytochrome P450IIE1. Carcinogenesis.
12:127–131. 1991. View Article : Google Scholar : PubMed/NCBI
|
44
|
Sohn OS, Fiala ES, Requeijo SP, Weisburger
JH and Gonzalez FJ: Differential effects of CYP2E1 status on the
metabolic activation of the colon carcinogens azoxymethane and
methylazoxymethanol. Cancer Res. 61:8435–8440. 2001.PubMed/NCBI
|
45
|
Mori Y, Takahashi H, Yamazaki H, et al:
Distribution, metabolism and excretion of
N-nitrosobis(2-hydroxypropyl)amine in Wistar rats. Carcinogenesis.
5:1443–1447. 1984. View Article : Google Scholar : PubMed/NCBI
|