1
|
Gilles R, Guinebretiere J-M, Toussaint C,
Spielman M, Rietjens M, Petit J-Y, Contesso G, Masselot J and Vael
D: Locally advanced breast cancer: contrast-enhanced subtraction MR
imaging of response to preoperative chemotherapy. Radiology.
191:633–638. 1994. View Article : Google Scholar : PubMed/NCBI
|
2
|
Tsuboi N, Ogawa Y, Inomata T, Yoshida D,
Yoshida S, Moriki T and Kumon M: Changes in the findings of dynamic
MRI by preoperative CAF chemotherapy for patients with breast
cancer of stage II and III: Pathologic correlation. Oncol Rep.
6:727–732. 1998.PubMed/NCBI
|
3
|
Weatherall PT, Evans GF, Metzger GJ,
Saborrian MH and Leith AM: MRI vs. histologic measurement of breast
cancer following chemotherapy: comparison with X-ray mammography
and palpation. J Magn Reson Imaging. 13:868–875. 2001. View Article : Google Scholar : PubMed/NCBI
|
4
|
Balu-Maestro C, Chapellier C, Bleuse A,
Chanalet I, Chauvel C and Largillier R: Imaging in evaluation of
response to neoadjuvant breast cancer treatment benefits of MRI.
Breast Cancer Res Treat. 72:145–152. 2002. View Article : Google Scholar : PubMed/NCBI
|
5
|
Rosen EL, Blackwell KL, Bakser JA, Soo MS,
Bentley RC, Yu D, Samulski TV and Dewhirst MW: Accuracy of MRI in
the detection of residual breast cancer after neoadjuvant
chemotherapy. AJR Am J Roentgenol. 181:1275–1282. 2003. View Article : Google Scholar : PubMed/NCBI
|
6
|
Baudu LD, Murakami J, Murayama S,
Hashiguchi N, Sakai S Masuda K, Toyoshima S, Kuroki S and Ohno S:
Breast lesions correlation of contrast medium enhancement patterns
on MR images with histopathologic findings and tumor angiogenesis.
Radiology. 200:639–649. 1996. View Article : Google Scholar : PubMed/NCBI
|
7
|
Guo Y, Cai YQ, Cai ZL, Gao YG, An NY, Ma
L, Mahankali S and Gao JH: Differentiation of clinically benign and
malignant breast lesions using diffusion-weighted imaging. J Magn
Reson Imaging. 16:172–178. 2002. View Article : Google Scholar : PubMed/NCBI
|
8
|
Englander SA, Ulung AM, Brem R, Glickson
JD and Zijl PCM: Diffusion imaging of human breast. NMR Biomed.
10:348–352. 1997. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kuroki Y, Nasu K, Kuroki S, Murakami K,
Hayashi T, Sekiguchi R and Nawano S: Diffusion-weighted imaging of
breast cancer with the sensitivity encoding technique: analysis of
the apparent diffusion coefficient value. Magn Reon Med Sci.
3:79–85. 2004. View Article : Google Scholar : PubMed/NCBI
|
10
|
Woodhams R, Matsunaga K, Kan S, Hata H,
Ozaki M, Iwabuchi K, Kuranami M, Watanabe M and Hayakawa K: ADC
mapping of benign and malignant breast tumors. Magn Reon Med Sci.
4:35–42. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Woodhams R, Matsunaga K, Iwabuchi K, Kan
S, Hata H, Kuranami M, Watanabe M and Hayakawa K: Diffusion
weighted imaging of malignant breast tumors: the usefulness of
apparent diffusion coefficient (ADC) value and ADC map for the
detection of malignant breast tumors and evaluation of cancer
extension. J Comput Assist Tomogr. 29:644–649. 2005.PubMed/NCBI
|
12
|
Rubesova E, Grell AS, De Maertelaer V,
Metens T, Chao S and Land Lemort M: Quantitive diffusion imaging in
breast cancer: a clinical prospective study. J Magn Reson Imaging.
24:319–324. 2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Galons JP, Altbach MI, Paine-Murrieta GD,
Taylor CW and Gillies RJ: Early increases in breast tumor xenograft
water mobility in response to pacritaxel therapy detected by
non-invasive diffusion magnetic resonance imaging. Neoplasia.
1:113–117. 1999. View Article : Google Scholar
|
14
|
Pickles MD, Gibbs P, Lowry M and Turnbull
LW: Diffusion changes precede size reduction in neoadjuvant
treatment of breast cancer. Magn Reson Imaging. 24:843–847. 2006.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Nakamura S, Kenjo H, Nishio T, Kaxama T
and Doi O: Efficacy of 3D-MR mammography for breast conserving
surgery after neoadjuvant chemotherapy. Breast Cancer. 9:15–19.
2002. View Article : Google Scholar : PubMed/NCBI
|
16
|
Murata Y, Ogawa Y, Yoshida S, Kubota K,
Itoh S, Fukumoto M, Nishioka A, Moriki T, Maeda H and Tanaka Y:
Utility of initial MRI for predicting extent of residual disease
after neoadjuvant chemotherapy: Analysis of 70 breast cancer
patients. Oncol Rep. 12:1257–1262. 2004.
|
17
|
Tozaki M, Kobayashi T, Uno S, Aiba K,
Takeyama H, Shioya H, Tabei I, Toriumi Y, Suzuki M and Fukuda K:
Breast-conserving surgery after chemotherapy: value of MDCT for
determining tumor distribution and shrinkage pattern. AJR Am J
Roentogenol. 186:431–439. 2006. View Article : Google Scholar : PubMed/NCBI
|
18
|
American College of Radiology. Breast
Imaging Reporting and Data System (BI-RADS). 4th edition. American
College of Radiology; Reston, VA: pp. 79–89. 2003
|
19
|
Rieber A, Zeitler H, Rosenthal H, Görich
J, Kreienberg R, Brambs HJ and Tomczak R: MRI of breast cancer:
influence of chemotherapy on sensitivity. Br J Radiol. 70:452–458.
1997. View Article : Google Scholar : PubMed/NCBI
|
20
|
Stehling MK, Turner R and Mansfield P:
Echo-planar imaging: magnetic resonance imaging in a fraction of a
second. Science. 254:43–50. 1991. View Article : Google Scholar : PubMed/NCBI
|
21
|
Tan KB, Thamboo TP and Rju GC:
Xanthomatous pseudotumor: a usual postchemothrapy phenomenon in
breast cancer. Arch Pathol Lab Med. 127:739–741. 2003.PubMed/NCBI
|
22
|
Basser PJ, Pajevic S, Pierpaoli C, Dura J
and Aldroubi A: In vivo fiber tractography using DT-MRI data. Magn
Reson Med. 44:625–632. 2000. View Article : Google Scholar : PubMed/NCBI
|
23
|
Rovira A, Rovira-Gols A, Pedraza S, Grive
E, Molina C and Alvarez-Sobin J: Diffusion-weighted MR imaging in
the acute phase of transient ischemic attacks. AJNR Am J
Neuroradiol. 23:77–83. 2002.PubMed/NCBI
|
24
|
Yamashita Y, Tang Y and Takahashi M:
Ultrafast MR imaging of the abdomen: echo plannar imaging and
diffusion-weighted imaging. J Magn Reson Imaging. 8:367–374. 1998.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Ichikawa T, Haradome H, Hachiya J,
Nitatori T and Araki T: Diffusion-weighted MR imaging with
single-shot echo-plannar imaging in the upper abdomen: preliminary
clinical experience in 61 patients. Abdom Imaging. 24:456–461.
1999. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ries M, Joones RA, Basseau F, Moonen CT
and Grenier N: Diffusion tensor MRI of the human kidney. J Magn
Reson Imaging. 14:42–49. 2001. View Article : Google Scholar : PubMed/NCBI
|
27
|
Takahara T, Imai Y, Yamashita T, Yasuda S,
Nasu S and van Cauteren M: Diffusion weighted whole body imaging
with background body signal suppression (DWIBS): technical
improvement using free breathing, STIR and high resolusion 3D
display. Radiat Med. 22:275–282. 2004.PubMed/NCBI
|
28
|
Nonomura Y, Yasumoto M, Yoshimura R,
Haraguchi K, Ito S, Akashi T and Ohashi I: Relationship between
bone marrow cellularity and apparent diffusion coefficient. J Magn
Reon Imaging. 13:757–760. 2001. View Article : Google Scholar : PubMed/NCBI
|
29
|
Schmithorst VJ, Dardzinski BJ and Holland
SK: Simultaneous correlation of ghost and geometric distortion
artifacts in EPI using a multiecho reference scan. IEEE Tran Med
Imaging. 20:535–539. 2001. View Article : Google Scholar : PubMed/NCBI
|
30
|
Le Bihan D, Breton E, Lallemand D, Aubin
ML, Vignaud J and Laval-Jeantet M: Separation of diffusion and
perfusion in intraoxel incoherent motion MR imaging. Radiology.
168:692–698. 1998.PubMed/NCBI
|