Rho regulates the hepatocyte growth factor/scatter factor-stimulated cell motility of human oral squamous cell carcinoma cells
- Authors:
- Published online on: September 1, 2003 https://doi.org/10.3892/or.10.5.1351
- Pages: 1351-1356
Metrics: Total
Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Abstract
To investigate the effects of hepatocyte growth factor/scatter factor (HGF/SF) on the invasion and metastasis of human oral squamous cell carcinoma (SCC) cells, we examined cell motility and intercellular signal transduction of a human oral SCC cell line (SAS) obtained from the primary lesion of a tongue carcinoma. HGF/SF stimulation significantly enhanced the motility of SAS cells in a dose-dependent manner. Clostridium botulinum C3 exoenzyme (C3), which is known to selectively impair the function of Ras-related small G-protein p21rho (Rho), significantly reduced the motility of SAS cells. HGF/SF stimulation also enhanced the tyrosine phosphorylation of HGF receptors (c-Met) and focal adhesion kinase (FAK) on SAS cells, but C3 completely inhibited the phosphorylation of FAK. Furthermore, it was observed that Rho A protein, normally located around the nuclear area, was translocated to the membrane and levels in the cytolysate increased following HGF/SF stimulation with no change in Rho A mRNA. These results suggest that the activation of FAK caused by phosphorylation of c-Met may mediate the HGF/SF-induced motility of human oral SCC cells, and that Rho protein regulates the tyrosine phosphorylation of FAK through translocation from the nucleus to the membrane.