1
|
Parkin DM, Bray F, Ferlay J and Pisani P:
Global cancer statistics, 2002. CA Cancer J Clin. 55:74–108. 2005.
View Article : Google Scholar
|
2
|
Huerta S: Recent advances in the molecular
diagnosis and prognosis of colorectal cancer. Expert Rev Mol Diagn.
8:277–288. 2008. View Article : Google Scholar : PubMed/NCBI
|
3
|
Huang LY, Xu Y, Cai GX, Guan ZQ, Sheng WQ,
Lu HF, Xie LQ, Lu HJ and Cai SJ: S100A4 overexpression underlies
lymph node metastasis and poor prognosis in colorectal cancer.
World J Gastroenterol. 17:69–78. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Marenholz I, Volz A, Ziegler A, Davies A,
Ragoussis I, Korge BP and Mischke D: Genetic analysis of the
epidermal differentiation complex (EDC) on human chromosome 1q21:
chromosomal orientation, new markers, and a 6-Mb YAC contig.
Genomics. 37:295–302. 1996. View Article : Google Scholar : PubMed/NCBI
|
5
|
Mazzucchelli L: Protein S100A4: too long
overlooked by pathologists? Am J Pathol. 160:7–13. 2002. View Article : Google Scholar : PubMed/NCBI
|
6
|
Marenholz I, Heizmann CW and Fritz G: S100
proteins in mouse and man: from evolution to function and pathology
(including an update of the nomenclature). Biochem Biophys Res
Commun. 322:1111–1122. 2004. View Article : Google Scholar : PubMed/NCBI
|
7
|
Barraclough R: Calcium-binding protein
S100A4 in health and disease. Biochim Biophys Acta. 1448:190–199.
1998. View Article : Google Scholar : PubMed/NCBI
|
8
|
Micklem DR and Lorens JB: RNAi screening
for therapeutic targets in human malignancies. Curr Pharm
Biotechnol. 8:337–343. 2007. View Article : Google Scholar : PubMed/NCBI
|
9
|
Tuschl T and Borkhardt A: Small
interfering RNAs: a revolutionary tool for the analysis of gene
function and gene therapy. Mol Interv. 2:158–167. 2002. View Article : Google Scholar : PubMed/NCBI
|
10
|
Gentile A, Lazzari L, Benvenuti S,
Trusolino L and Comoglio PM: Ror1 is a pseudokinase that is crucial
for Met-driven tumorigenesis. Cancer Res. 71:3132–3141. 2011.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Huang Z, Huang S, Wang Q, Liang L, Ni S,
Wang L, Sheng W, He X and Du X: MicroRNA-95 promotes cell
proliferation and targets sorting Nexin 1 in human colorectal
carcinoma. Cancer Res. 71:2582–2589. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Mortazavi F, Dubinett S and Rettig M:
c-Crk proto-oncogene contributes to transcriptional repression of
p120-catenin in non-small cell lung cancer cells. Clin Exp
Metastasis. 28:391–404. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Mischke D, Korge BP, Marenholz I, Volz A
and Ziegler A: Genes encoding structural proteins of epidermal
cornification and S100 calcium-binding proteins form a gene complex
(‘epidermal differentiation complex’) on human chromosome 1q21. J
Invest Dermatol. 106:989–992. 1996.PubMed/NCBI
|
14
|
Vallely KM, Rustandi RR, Ellis KC,
Varlamova O, Bresnick AR and Weber DJ: Solution structure of human
Mts1 (S100A4) as determined by NMR spectroscopy. Biochemistry.
41:12670–12680. 2002. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zou M, Al-Baradie RS, Al-Hindi H, Farid NR
and Shi Y: S100A4 (Mts1) gene overexpression is associated with
invasion and metastasis of papillary thyroid carcinoma. Br J
Cancer. 93:1277–1284. 2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Rudland PS, Platt-Higgins A, Renshaw C,
West CR, Winstanley JH, Robertson L and Barraclough R: Prognostic
significance of the metastasis-inducing protein S100A4 (p9Ka) in
human breast cancer. Cancer Res. 60:1595–1603. 2000.PubMed/NCBI
|
17
|
Ai KX, Lu LY, Huang XY, Chen W and Zhang
HZ: Prognostic significance of S100A4 and vascular endothelial
growth factor expression in pancreatic cancer. World J
Gastroenterol. 14:1931–1935. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Ikenaga N, Ohuchida K, Mizumoto K, Yu J,
Fujita H, Nakata K, Ueda J, Sato N, Nagai E and Tanaka M: S100A4
mRNA is a diagnostic and prognostic marker in pancreatic carcinoma.
J Gastrointest Surg. 13:1852–1858. 2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Tsuna M, Kageyama S, Fukuoka J, Kitano H,
Doki Y, Tezuka H and Yasuda H: Significance of S100A4 as a
prognostic marker of lung squamous cell carcinoma. Anticancer Res.
29:2547–1554. 2009.PubMed/NCBI
|
20
|
Wang YY, Ye ZY, Zhao ZS, Tao HQ and Chu
YQ: High-level expression of S100A4 correlates with lymph node
metastasis and poor prognosis in patients with gastric cancer. Ann
Surg Oncol. 17:89–97. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Gongoll S, Peters G, Mengel M, Piso P,
Klempnauer J, Kreipe H and von Wasielewski R: Prognostic
significance of calcium-binding protein S100A4 in colorectal
cancer. Gastroenterology. 123:1478–1484. 2002. View Article : Google Scholar : PubMed/NCBI
|
22
|
Boye K, Nesland JM, Sandstad B, Maelandsmo
GM and Flatmark K: Nuclear S100A4 is a novel prognostic marker in
colorectal cancer. Eur J Cancer. 46:2919–2925. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Kwak JM, Lee HJ, Kim SH, Kim HK, Mok YJ,
Park YT, Choi JS and Moon HY: Expression of protein S100A4 is a
predictor of recurrence in colorectal cancer. World J
Gastroenterol. 16:3897–3904. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Wang HY, Zhang JY, Cui JT, Tan XH, Li WM,
Gu J and Lu YY: Expression status of S100A14 and S100A4 correlates
with metastatic potential and clinical outcome in colorectal cancer
after surgery. Oncol Rep. 23:45–52. 2010.PubMed/NCBI
|
25
|
Royston D and Jackson DG: Mechanisms of
lymphatic metastasis in human colorectal adenocarcinoma. J Pathol.
217:608–619. 2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Sundar SS and Ganesan TS: Role of
lymphangiogenesis in cancer. J Clin Oncol. 25:4298–4307. 2007.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Brinckerhoff CE and Matrisian LM: Matrix
metalloproteinases: a tail of a frog that became a prince. Nat Rev
Mol Cell Biol. 3:207–214. 2002. View
Article : Google Scholar : PubMed/NCBI
|
28
|
Kessenbrock K, Plaks V and Werb Z: Matrix
metalloproteinases: regulators of the tumor microenvironment. Cell.
141:52–67. 2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Saleem M, Kweon MH, Johnson JJ, Adhami VM,
Elcheva I, Khan N, Bin HB, Bhat KM, Sarfaraz S, Reagan-Shaw S,
Spiegelman VS, Setaluri V and Mukhtar H: S100A4 accelerates
tumorigenesis and invasion of human prostate cancer through the
transcriptional regulation of matrix metalloproteinase 9. Proc Natl
Acad Sci USA. 103:14825–14830. 2006. View Article : Google Scholar
|
30
|
Aung PP, Oue N, Mitani Y, Nakayama H,
Yoshida K, Noguchi T, Bosserhoff AK and Yasui W: Systematic search
for gastric cancer-specific genes based on SAGE data: melanoma
inhibitory activity and matrix metalloproteinase-10 are novel
prognostic factors in patients with gastric cancer. Oncogene.
25:2546–2547. 2006. View Article : Google Scholar
|
31
|
Yen CY, Chen CH, Chang CH, Tseng HF, Liu
SY, Chuang LY, Wen CH and Chang HW: Matrix metalloproteinases (MMP)
1 and MMP10 but not MMP12 are potential oral cancer markers.
Biomarkers. 14:244–249. 2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Brew K and Nagase H: The tissue inhibitors
of metalloproteinases (TIMPs): an ancient family with structural
and functional diversity. Biochim Biophys Acta. 1803:55–71. 2010.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Riddick AC, Shukla CJ, Pennington CJ, Bass
R, Nuttall RK, Hogan A, Sethia KK, Ellis V, Collins AT, Maitland
NJ, Ball RY and Edwards DR: Identification of degradome components
associated with prostate cancer progression by expression analysis
of human prostatic tissues. Br J Cancer. 92:2171–2180. 2005.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Okazaki M, Takeshita S, Kawai S, Kikuno R,
Tsujimura A, Kudo A and Amann E: Molecular cloning and
characterization of OB-cadherin, a new member of cadherin family
expressed in osteoblasts. J Biol Chem. 269:12092–12098.
1994.PubMed/NCBI
|
35
|
Brieger J, Duesterhoeft A, Brochhausen C,
Gosepath J, Kirkpatrick CJ and Mann WJ: Recurrence of pleomorphic
adenoma of the parotid gland - predictive value of cadherin-11 and
fascin. APMIS. 116:1050–1057. 2008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Li Z, Zhou Z and Donahue HJ: Alterations
in Cx43 and OB-cadherin affect breast cancer cell metastatic
potential. Clin Exp Metastasis. 25:265–272. 2008. View Article : Google Scholar : PubMed/NCBI
|
37
|
Tamura D, Hiraga T, Myoui A, Yoshikawa H
and Yoneda T: Cadherin-11-mediated interactions with bone marrow
stromal/osteoblastic cells support selective colonization of breast
cancer cells in bone. Int J Oncol. 33:17–24. 2008.PubMed/NCBI
|
38
|
Chu K, Cheng CJ, Ye X, Lee YC, Zurita AJ,
Chen DT, Yu-Lee LY, Zhang S, Yeh ET, Hu MC, Logothetis CJ and Lin
SH: Cadherin-11 promotes the metastasis of prostate cancer cells to
bone. Mol Cancer Res. 6:1259–1267. 2008. View Article : Google Scholar : PubMed/NCBI
|