1
|
Jacobs JJ and van Lohuizen M: Cellular
memory of transcriptional states by Polycomb-group proteins. Semin
Cell Dev Biol. 10:227–235. 1999. View Article : Google Scholar : PubMed/NCBI
|
2
|
Schwartz YB and Pirrotta V: Polycomb
silencing mechanisms and the management of genomic programmes. Nat
Rev Genet. 8:9–22. 2007. View
Article : Google Scholar : PubMed/NCBI
|
3
|
Schuettengruber B, Chourrout D, Vervoort
M, Leblanc B and Cavalli G: Genome regulation by polycomb and
trithorax proteins. Cell. 128:735–745. 2007. View Article : Google Scholar : PubMed/NCBI
|
4
|
Spivakov M and Fisher AG: Epigenetic
signatures of stem-cell identity. Nat Rev Genet. 8:263–271. 2007.
View Article : Google Scholar
|
5
|
Rajasekhar VK and Begemann M: Concise
review: roles of polycomb group proteins in development and
disease: a stem cell perspective. Stem Cells. 25:2498–2510. 2007.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Haupt Y, Alexander WS, Barri G, Klinken SP
and Adams JM: Novel zinc finger gene implicated as myc collaborator
by retrovirally accelerated lymphomagenesis in E mu-myc transgenic
mice. Cell. 65:753–763. 1991. View Article : Google Scholar : PubMed/NCBI
|
7
|
van Lohuizen M, Verbeek S, Scheijen B,
Wientjens E, van der Gulden H and Berns A: Identification of
cooperating oncogenes in E mu-myc transgenic mice by provirus
tagging. Cell. 65:737–752. 1991.PubMed/NCBI
|
8
|
Jacobs JJ, Scheijen B, Voncken JW, Kieboom
K, Berns A and van Lohuizen M: Bmi-1 collaborates with c-Myc in
tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF.
Genes Dev. 13:2678–2690. 1999. View Article : Google Scholar : PubMed/NCBI
|
9
|
Jacobs JJ, Kieboom K, Marino S, DePinho RA
and van Lohuizen M: The oncogene and Polycomb-group gene Bmi-1
regulates cell proliferation and senescence through the ink4a
locus. Nature. 397:164–168. 1999. View
Article : Google Scholar : PubMed/NCBI
|
10
|
Dimri GP, Martinez JL, Jacobs JJ, et al:
The Bmi-1 oncogene induces telomerase activity and immortalizes
human mammary epithelial cells. Cancer Res. 62:4736–4745.
2002.PubMed/NCBI
|
11
|
Guney I and Sedivy JM: Cellular
senescence, epigenetic switches and c-Myc. Cell Cycle. 5:2319–2323.
2006. View Article : Google Scholar : PubMed/NCBI
|
12
|
Datta S, Hoenerhoff MJ, Bommi P, et al:
Bmi-1 cooperates with H-Ras to transform human mammary epithelial
cells via dysregulation of multiple growth-regulatory pathways.
Cancer Res. 67:10286–10295. 2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Molofsky AV, Pardal R, Iwashita T, Park
IK, Clarke MF and Morrison SJ: Bmi-1 dependence distinguishes
neural stem cell self-renewal from progenitor proliferation.
Nature. 425:962–967. 2003. View Article : Google Scholar : PubMed/NCBI
|
14
|
Raaphorst FM: Self-renewal of
hematopoietic and leukemic stem cells: a central role for the
Polycomb-group gene Bmi-1. Trends Immunol. 24:522–524. 2003.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Grinstein E and Wernet P: Cellular
signaling in normal and cancerous stem cells. Cell Signal.
19:2428–2433. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Liu S, Dontu G, Mantle ID, et al: Hedgehog
signaling and Bmi-1 regulate self-renewal of normal and malignant
human mammary stem cells. Cancer Res. 66:6063–6071. 2006.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Vrzalikova K, Skarda J, Ehrmann J, et al:
Prognostic value of Bmi-1 oncoprotein expression in NSCLC patients:
a tissue microarray study. J Cancer Res Clin Oncol. 134:1037–1042.
2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Liu JH, Song LB, Zhang X, et al: Bmi-1
expression predicts prognosis for patients with gastric carcinoma.
J Surg Oncol. 97:267–272. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wang H, Pan K, Zhang HK, et al: Increased
polycomb-group oncogene Bmi-1 expression correlates with poor
prognosis in hepatocellular carcinoma. J Cancer Res Clin Oncol.
134:535–541. 2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Chowdhury M, Mihara K, Yasunaga S, Ohtaki
M, Takihara Y and Kimura A: Expression of Polycomb-group (PcG)
protein BMI-1 predicts prognosis in patients with acute myeloid
leukemia. Leukemia. 21:1116–1122. 2007.PubMed/NCBI
|
21
|
Arnes JB, Collett K and Akslen LA:
Independent prognostic value of the basal-like phenotype of breast
cancer and associations with EGFR and candidate stem cell marker
BMI-1. Histopathology. 52:370–380. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Song LB, Zeng MS, Liao WT, et al: Bmi-1 is
a novel molecular marker of nasopharyngeal carcinoma progression
and immortalizes primary human nasopharyngeal epithelial cells.
Cancer Res. 66:6225–6232. 2006. View Article : Google Scholar
|
23
|
Qin ZK, Yang JA, Zeng MS, et al:
Expression and clinical significance of Bmi-1 protein in bladder
cancer. Ai Zheng. 27:1327–1330. 2008.(In Chinese).
|
24
|
Glinsky GV, Berezovska O and Glinskii AB:
Microarray analysis identifies a death-from-cancer signature
predicting therapy failure in patients with multiple types of
cancer. J Clin Invest. 115:1503–1521. 2005. View Article : Google Scholar : PubMed/NCBI
|
25
|
Mani SA, Guo W, Liao MJ, et al: The
epithelial-mesenchymal transition generates cells with properties
of stem cells. Cell. 133:704–715. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Yang MH, Hsu DS, Wang HW, et al: Bmi1 is
essential in Twist1-induced epithelial-mesenchymal transition. Nat
Cell Biol. 12:982–992. 2010. View
Article : Google Scholar : PubMed/NCBI
|
27
|
Song LB, Li J, Liao WT, et al: The
polycomb group protein Bmi-1 represses the tumor suppressor PTEN
and induces epithelial-mesenchymal transition in human
nasopharyngeal epithelial cells. J Clin Invest. 119:3626–3636.
2009. View
Article : Google Scholar
|
28
|
Theys J, Jutten B, Habets R, et al:
E-Cadherin loss associated with EMT promotes radioresistance in
human tumor cells. Radiother Oncol. 99:392–397. 2011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kurrey NK, Jalgaonkar SP, Joglekar AV, et
al: Snail and slug mediate radioresistance and chemoresistance by
antagonizing p53-mediated apoptosis and acquiring a stem-like
phenotype in ovarian cancer cells. Stem Cells. 27:2059–2068. 2009.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Guo BH, Feng Y, Zhang R, et al: Bmi-1
promotes invasion and metastasis, and its elevated expression is
correlated with an advanced stage of breast cancer. Mol Cancer.
10:102011. View Article : Google Scholar : PubMed/NCBI
|
31
|
Dimri GP, Itahana K, Acosta M and Campisi
J: Regulation of a senescence checkpoint response by the E2F1
transcription factor and p14(ARF) tumor suppressor. Mol Cell Biol.
20:273–285. 2000. View Article : Google Scholar : PubMed/NCBI
|
32
|
Liu ZG, Chen HY, Cheng JJ, Chen ZP, Li XN
and Xia YF: Relationship between methylation status of ERCC1
promoter and radiosensitivity in glioma cell lines. Cell Biol Int.
33:1111–1117. 2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Reers M, Smiley ST, Mottola-Hartshorn C,
Chen A, Lin M and Chen LB: Mitochondrial membrane potential
monitored by JC-1 dye. Methods Enzymol. 260:406–417. 1995.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Lee K, Adhikary G, Balasubramanian S, et
al: Expression of Bmi-1 in epidermis enhances cell survival by
altering cell cycle regulatory protein expression and inhibiting
apoptosis. J Invest Dermatol. 128:9–17. 2008. View Article : Google Scholar : PubMed/NCBI
|
35
|
Yan SS, Liu L, Liu ZG, Zeng MS, Song LB
and Xia YF: Expression and clinical significance of DNA-PKcs in
nasopharyngeal carcinoma. Ai Zheng. 27:979–983. 2008.(In
Chinese).
|
36
|
Kraus AC, Ferber I, Bachmann SO, et al: In
vitro chemo- and radio-resistance in small cell lung cancer
correlates with cell adhesion and constitutive activation of AKT
and MAP kinase pathways. Oncogene. 21:8683–8695. 2002. View Article : Google Scholar : PubMed/NCBI
|
37
|
Liang K, Jin W, Knuefermann C, et al:
Targeting the phosphatidylinositol 3-kinase/Akt pathway for
enhancing breast cancer cells to radiotherapy. Mol Cancer Ther.
2:353–360. 2003.PubMed/NCBI
|
38
|
Soderlund K, Perez-Tenorio G and Stal O:
Activation of the phosphatidylinositol 3-kinase/Akt pathway
prevents radiation-induced apoptosis in breast cancer cells. Int J
Oncol. 26:25–32. 2005.PubMed/NCBI
|
39
|
LoPiccolo J, Granville CA, Gills JJ and
Dennis PA: Targeting Akt in cancer therapy. Anticancer Drugs.
18:861–874. 2007.
|
40
|
Lemasters JJ, Qian T, Trost LC, et al:
Confocal microscopy of the mitochondrial permeability transition in
necrotic and apoptotic cell death. Biochem Soc Symp. 66:205–222.
1999.PubMed/NCBI
|
41
|
Kang YH, Yi MJ, Kim MJ, et al:
Caspase-independent cell death by arsenic trioxide in human
cervical cancer cells: reactive oxygen species-mediated
poly(ADP-ribose) polymerase-1 activation signals apoptosis-inducing
factor release from mitochondria. Cancer Res. 64:8960–8967. 2004.
View Article : Google Scholar
|
42
|
Kim WH, Park WB, Gao B and Jung MH:
Critical role of reactive oxygen species and mitochondrial membrane
potential in Korean mistletoe lectin-induced apoptosis in human
hepatocarcinoma cells. Mol Pharmacol. 66:1383–1396. 2004.
View Article : Google Scholar
|
43
|
Park MT, Kim MJ, Kang YH, et al:
Phytosphingosine in combination with ionizing radiation enhances
apoptotic cell death in radiation-resistant cancer cells through
ROS-dependent and -independent AIF release. Blood. 105:1724–1733.
2005. View Article : Google Scholar : PubMed/NCBI
|