1
|
Kyle RA and Rajkumar SV: Multiple myeloma.
N Engl J Med. 351:1860–1873. 2004. View Article : Google Scholar
|
2
|
Rajkumar SV and Kyle RA: Multiple myeloma:
diagnosis and treatment. Mayo Clin Proc. 80:1371–1382. 2005.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Parkin DM, Bray F, Ferlay J and Pisani P:
Global cancer statistics, 2002. CA Cancer J Clin. 55:74–108. 2005.
View Article : Google Scholar
|
4
|
Jemal A, Siegel R, Ward E, Murray T, Xu J
and Thun MJ: Cancer statistics, 2007. CA Cancer J Clin. 57:43–66.
2007. View Article : Google Scholar
|
5
|
Munshi NC: Plasma cell disorders: an
historical perspective. Hematology Am Soc Hematol Educ Program.
2008:2972008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Wall ME, Wani MC, Cook CE, Palmer KH,
McPhail AT and Sim GA: Plant antitumor agents. I. The isolation and
structure of camptothecin, a novel alkaloidal leukemia and tumor
inhibitor from Camptotheca acuminata. J Am Chem Soc.
88:3888–3890. 1966. View Article : Google Scholar
|
7
|
Hsiang YH, Hertzberg R, Hecht S and Liu
LF: Camptothecin induces protein-linked DNA breaks via mammalian
DNA topoisomerase I. J Biol Chem. 260:14873–14878. 1985.PubMed/NCBI
|
8
|
Potmesil M: Camptothecins: from bench
research to hospital wards. Cancer Res. 54:1431–1439.
1994.PubMed/NCBI
|
9
|
Takimoto CH, Wright J and Arbuck SG:
Clinical applications of the camptothecins. Biochim Biophys Acta.
1400:107–119. 1998. View Article : Google Scholar : PubMed/NCBI
|
10
|
Topcu Z: DNA topoisomerases as targets for
anticancer drugs. J Clin Pharm Ther. 26:405–416. 2001. View Article : Google Scholar : PubMed/NCBI
|
11
|
Bredholt T, Dimba EA, Hagland HR, et al:
Camptothecin and khat (Catha edulis Forsk.) induced distinct
cell death phenotypes involving modulation of c-FLIPL, Mcl-1,
procaspase-8 and mitochondrial function in acute myeloid leukemia
cell lines. Mol Cancer. 8:1012009.PubMed/NCBI
|
12
|
Garcia-Carbonero R and Supko JG: Current
perspectives on the clinical experience, pharmacology, and
continued development of the camptothecins. Clin Cancer Res.
8:641–661. 2002.PubMed/NCBI
|
13
|
Hatefi A and Amsden B: Camptothecin
delivery methods. Pharm Res. 19:1389–1399. 2002. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kehrer DF, Soepenberg O, Loos WJ, Verweij
J and Sparreboom A: Modulation of camptothecin analogs in the
treatment of cancer: a review. Anticancer Drugs. 12:89–105. 2001.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Bodley AL, Wani MC, Wall ME and Shapiro
TA: Antitrypanosomal activity of camptothecin analogs.
Structure-activity correlations. Biochem Pharmacol. 50:937–942.
1995. View Article : Google Scholar : PubMed/NCBI
|
16
|
Haluska P, Rubin E and Verschraegen CF:
Topoisomerase-I inhibitors in gynecologic tumors. Hematol Oncol
Clin North Am. 13:43–61. vii–viii. 1999. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kawano K, Watanabe M, Yamamoto T, et al:
Enhanced antitumor effect of camptothecin loaded in
long-circulating polymeric micelles. J Control Release.
112:329–332. 2006. View Article : Google Scholar : PubMed/NCBI
|
18
|
Sun FX, Tohgo A, Bouvet M, et al: Efficacy
of camptothecin analog DX-8951f (Exatecan Mesylate) on human
pancreatic cancer in an orthotopic metastatic model. Cancer Res.
63:80–85. 2003.PubMed/NCBI
|
19
|
Zu YG, Li QY, Fu YJ and Wang W: Synthesis
and cytotoxicity of water soluble quaternary salt derivatives of
camptothecin. Bioorg Med Chem Lett. 14:4023–4026. 2004. View Article : Google Scholar : PubMed/NCBI
|
20
|
van Hattum AH, Pinedo HM, Schluper HM,
Erkelens CA, Tohgo A and Boven E: The activity profile of the
hexacyclic camptothecin derivative DX-8951f in experimental human
colon cancer and ovarian cancer. Biochem Pharmacol. 64:1267–1277.
2002.PubMed/NCBI
|
21
|
Akimoto K, Kawai A and Ohya K: Kinetic
studies of the hydrolysis and lactonization of camptothecin and its
derivatives, CPT-11 and SN-38, in aqueous aolution. Chem Pharm
Bulletin. 42:2135–2138. 1994. View Article : Google Scholar
|
22
|
Hanson BA, Schowen RL and Stella VJ: A
mechanistic and kinetic study of the E-ring hydrolysis and
lactonization of a novel phosphoryloxymethyl prodrug of
camptothecin. Pharm Res. 20:1031–1038. 2003. View Article : Google Scholar : PubMed/NCBI
|
23
|
Tanizawa A, Fujimori A, Fujimori Y and
Pommier Y: Comparison of topoisomerase I inhibition, DNA damage,
and cytotoxicity of camptothecin derivatives presently in clinical
trials. J Natl Cancer Inst. 86:836–842. 1994. View Article : Google Scholar : PubMed/NCBI
|
24
|
Burke TG, Staubus AE, Mishra AK and Malak
H: Liposomal stabilization of camptothecin’s lactone ring. J Am
Chem Soc. 114:8318–8319. 1992.
|
25
|
Cortesi R, Esposito E, Maietti A,
Menegatti E and Nastruzzi C: Formulation study for the antitumor
drug camptothecin: liposomes, micellar solutions and a
microemulsion. Int J Pharm. 159:95–103. 1997. View Article : Google Scholar
|
26
|
Watanabe M, Kawano K, Yokoyama M,
Opanasopit P, Okano T and Maitani Y: Preparation of
camptothecin-loaded polymeric micelles and evaluation of their
incorporation and circulation stability. Int J Pharm. 308:183–189.
2006. View Article : Google Scholar : PubMed/NCBI
|
27
|
Shenderova A, Burke TG and Schwendeman SP:
The acidic microclimate in poly(lactide-co-glycolide) microspheres
stabilizes camptothecins. Pharm Res. 16:241–248. 1999.PubMed/NCBI
|
28
|
Tong W, Wang L and D’Souza MJ: Evaluation
of PLGA microspheres as delivery system for antitumor
agent-camptothecin. Drug Dev Ind Pharm. 29:745–756. 2003.PubMed/NCBI
|
29
|
Chandy T and Sharma CP: Chitosan-as a
biomaterial. Biomater Artif Cells Artif Organs. 18:1–24. 1990.
|
30
|
Kotzé AF, Lueßen HL, de Boer AG, Verhoef
JC and Junginger HE: Chitosan for enhanced intestinal permeability:
prospects for derivatives soluble in neutral and basic
environments. Eur J Pharm Sci. 7:145–151. 1998.PubMed/NCBI
|
31
|
Kotze AF, Luessen HL, de Leeuw BJ, de Boer
BG, Verhoef JC and Junginger HE: N-trimethyl chitosan chloride as a
potential absorption enhancer across mucosal surfaces: in vitro
evaluation in intestinal epithelial cells (Caco-2). Pharm Res.
14:1197–1202. 1997.
|
32
|
Jintapattanakit A, Mao S, Kissel T and
Junyaprasert VB: Physicochemical properties and biocompatibility of
N-trimethyl chitosan: effect of quaternization and dimethylation.
Eur J Pharm Biopharm. 70:563–571. 2008.PubMed/NCBI
|
33
|
Peng X and Zhang L: Surface fabrication of
hollow microspheres from N-methylated chitosan cross-linked with
gultaraldehyde. Langmuir. 21:1091–1095. 2005. View Article : Google Scholar : PubMed/NCBI
|
34
|
Peng X, Zhang L and Kennedy JF: Release
behavior of microspheres from cross-linked N-methylated chitosan
encapsulated ofloxacin. Carbohydr Polym. 65:288–295. 2006.
View Article : Google Scholar
|
35
|
Zhilei L, Steenekamp JH and Hamman JH:
Cross-linked cationic polymer microparticles: effect of N-trimethyl
chitosan chloride on the release and permeation of ibuprofen. Drug
Dev Ind Pharm. 31:311–317. 2005. View Article : Google Scholar : PubMed/NCBI
|
36
|
Li X, Kong X, Zhang J, et al: A novel
composite hydrogel based on chitosan and inorganic phosphate for
local drug delivery of camptothecin nanocolloids. J Pharm Sci.
100:232–241. 2011. View Article : Google Scholar : PubMed/NCBI
|
37
|
Yuan ZP, Chen LJ, Fan LY, et al: Liposomal
quercetin efficiently suppresses growth of solid tumors in murine
models. Clin Cancer Res. 12:3193–3199. 2006. View Article : Google Scholar : PubMed/NCBI
|
38
|
Muther RS and Bennett WM: Effects of
dimethyl sulfoxide on renal function in man. JAMA. 244:2081–2083.
1980. View Article : Google Scholar : PubMed/NCBI
|
39
|
Gorczyca W, Gong J, Ardelt B, Traganos F
and Darzynkiewicz Z: The cell cycle related differences in
susceptibility of HL-60 cells to apoptosis induced by various
antitumor agents. Cancer Res. 53:3186–3192. 1993.PubMed/NCBI
|
40
|
Rajkumar SV: Multiple myeloma. Curr Probl
Cancer. 33:7–64. 2009. View Article : Google Scholar
|
41
|
Sirohi B and Powles R: Multiple myeloma.
Lancet. 363:875–887. 2004. View Article : Google Scholar : PubMed/NCBI
|
42
|
Hideshima T and Anderson KC: Molecular
mechanisms of novel therapeutic approaches for multiple myeloma.
Nat Rev Cancer. 2:927–937. 2002. View
Article : Google Scholar : PubMed/NCBI
|
43
|
Donato ML, Aleman A, Champlin RE, et al:
High-dose topotecan, melphalan and cyclophosphamide (TMC) with stem
cell support: a new regimen for the treatment of multiple myeloma.
Leuk Lymphoma. 45:755–759. 2004. View Article : Google Scholar : PubMed/NCBI
|
44
|
Kraut EH, Crowley JJ, Wade JL, et al:
Evaluation of topotecan in resistant and relapsing multiple
myeloma: a Southwest Oncology Group study. J Clin Oncol.
16:589–592. 1998.PubMed/NCBI
|
45
|
Kraut EH, Young D, Farag S, James AG and
Solove RJ: Phase II study of topotecan and cyclophosphamide in
patients with relapsed and refractory multiple myeloma. Leuk Res.
29:1233–1234. 2005. View Article : Google Scholar : PubMed/NCBI
|
46
|
Watanabe M, Kawano K, Toma K, Hattori Y
and Maitani Y: In vivo antitumor activity of camptothecin
incorporated in liposomes formulated with an artificial lipid and
human serum albumin. J Control Release. 127:231–238. 2008.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Rinaudo M: Chitin and chitosan: properties
and applications. Prog Polym Sci. 31:603–632. 2006. View Article : Google Scholar
|
48
|
Cardile V, Frasca G, Rizza L, et al:
Improved adhesion to mucosal cells of water-soluble chitosan
tetraalkylammonium salts. Int J Pharm. 362:88–92. 2008. View Article : Google Scholar : PubMed/NCBI
|
49
|
Snyman D, Hamman JH and Kotze AF:
Evaluation of the mucoadhesive properties of N-trimethyl chitosan
chloride. Drug Dev Ind Pharm. 29:61–69. 2003. View Article : Google Scholar : PubMed/NCBI
|
50
|
Mourya VK and Inamdar NN: Trimethyl
chitosan and its applications in drug delivery. J Mater Sci Mater
Med. 20:1057–1079. 2009. View Article : Google Scholar : PubMed/NCBI
|