1
|
Legge F, Ferrandina G, Salutari V, et al:
Biological characterization of ovarian cancer: prognostic and
therapeutic implications. Ann Oncol. 16:95–101. 2005. View Article : Google Scholar : PubMed/NCBI
|
2
|
Heintz AP, Odicino F, Maisonneuve P, et
al: Carcinoma of the ovary. FIGO 6th Annual Report on the Results
of Treatment in Gynecological Cancer. Int J Gynaecol Obstet.
95:S161–S192. 2006.PubMed/NCBI
|
3
|
Du Bois A and Pfisterer J: Future options
for first-line therapy of advanced ovarian cancer. Int J Gynecol
Cancer. 15:42–50. 2005.PubMed/NCBI
|
4
|
Foster T, Brown TM, Chang J, et al: A
review of the current evidence for maintenance therapy in ovarian
cancer. Gynecol Oncol. 115:290–301. 2009. View Article : Google Scholar : PubMed/NCBI
|
5
|
de Jongh FE, de Wit R, Verweij J, et al:
Dose-dense cisplatin/paclitaxel: a well-tolerated and highly
effective chemotherapeutic regimen in patients with advanced
ovarian cancer. Eur J Cancer. 38:2005–2013. 2002.
|
6
|
Muggia F: Platinum compounds 30 years
after the introduction of cisplatin: implications for the treatment
of ovarian cancer. Gynecol Oncol. 112:275–281. 2009.PubMed/NCBI
|
7
|
Rabik CA and Dolan ME: Molecular
mechanisms of resistance and toxicity associated with platinating
agents. Cancer Treat Rev. 33:9–23. 2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Hu M, Liu Y, Deng C, Han R, et al:
Enhanced invasiveness in multidrug resistant leukemic cells is
associated with overexpression of P-glycoprotein and cellular
inhibitor of apoptosis protein. Leuk Lymphoma. 52:1302–1311. 2011.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Gottesman MM and Ling V: The molecular
basis of multidrug resistance in cancer: the early years of
P-glycoprotein research. FEBS Lett. 580:998–1009. 2006.PubMed/NCBI
|
10
|
Park E, Gang EJ, Hsieh YT, et al:
Targeting survivin overcomes drug resistance in acute lymphoblastic
leukemia. Blood. 118:2191–2199. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Fraser M, Bai T and Tsang BK: Akt promotes
cisplatin resistance in human ovarian cancer cells through
inhibition of p53 phosphorylation and nuclear function. Int J
Cancer. 122:534–546. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Cheung CH, Wu SY, Lee TR, et al: Cancer
cells acquire mitotic drug resistance properties through beta
I-tubulin mutations and alterations in the expression of
beta-tubulin isotypes. PLoS One. 5:e125642010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zindy P, Bergé Y, Allal B, et al:
Formation of the eIF4F translation-initiation complex determines
sensitivity to anticancer drugs targeting the EGFR and HER2
receptors. Cancer Res. 71:4068–4073. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Sabatino MA, Marabese M, Ganzinelli M, et
al: Down-regulation of the nucleotide excision repair gene XPG as a
new mechanism of drug resistance in human and murine cancer cells.
Mol Cancer. 9:2592010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Kirschner K and Melton DW: Multiple roles
of the ERCC1-XPF endonuclease in DNA repair and resistance to
anticancer drugs. Anticancer Res. 30:3223–3232. 2010.PubMed/NCBI
|
16
|
Li Z, Hu S, Wang J, Cai J, et al: MiR-27a
modulates MDR1/P-glycoprotein expression by targeting HIPK2 in
human ovarian cancer cells. Gynecol Oncol. 119:125–130. 2010.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Bartel DP: MicroRNAs: genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Denli AM, Tops BB, Plasterk RH, et al:
Processing of primary microRNAs by the Microprocessor complex.
Nature. 432:231–235. 2004. View Article : Google Scholar : PubMed/NCBI
|
19
|
Berezikov E, Guryev V, van de Belt J, et
al: Phylogenetic shadowing and computational identification of
human microRNA genes. Cell. 120:21–24. 2005. View Article : Google Scholar : PubMed/NCBI
|
20
|
Lund E, Güttinger S, Calado A, et al:
Nuclear export of microRNA precursors. Science. 303:95–98. 2004.
View Article : Google Scholar
|
21
|
He L and Hannon GJ: MicroRNAs: small RNAs
with a big role in gene regulation. Nat Rev Genet. 5:522–531. 2004.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Kloosterman WP and Plasterk RH: The
diverse functions of microRNAs in animal development and disease.
Dev Cell. 11:441–450. 2006. View Article : Google Scholar : PubMed/NCBI
|
23
|
Esquela-Kerscher A and Slack FJ:
Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer.
6:259–269. 2006. View
Article : Google Scholar
|
24
|
Iorio MV, Visone R, Di Leva G, et al:
MicroRNA signatures in human ovarian cancer. Cancer Res.
67:8699–8707. 2007. View Article : Google Scholar : PubMed/NCBI
|
25
|
Yanaihara N, Caplen N, Bowman E, et al:
Unique microRNA molecular profiles in lung cancer diagnosis and
prognosis. Cancer Cell. 9:189–198. 2006. View Article : Google Scholar
|
26
|
Calin GA, Dumitru CD, Shimizu M, et al:
Frequent deletions and down-regulation of microRNA genes miR15 and
miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci
USA. 99:15524–15529. 2002. View Article : Google Scholar : PubMed/NCBI
|
27
|
Gong C, Yao Y, Wang Y, et al:
Up-regulation of miR-21 mediates resistance to trastuzumab therapy
for breast cancer. J Biol Chem. 286:19127–19137. 2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Hwang JH, Voortman J, Giovannetti E, et
al: Identification of microRNA-21 as a biomarker for
chemoresistance and clinical outcome following adjuvant therapy in
resectable pancreatic cancer. PLoS One. 5:e106302010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Tomimaru Y, Eguchi H, Nagano H, et al:
MicroRNA-21 induces resistance to the anti-tumour effect of
interferon-α/5-fluorouracil in hepatocellular carcinoma cells. Br J
Cancer. 103:1617–1626. 2010.PubMed/NCBI
|
30
|
Krek A, Grün D, Poy MN, et al:
Combinatorial microRNA target predictions. Nat Genet. 37:495–500.
2005. View
Article : Google Scholar
|
31
|
Grün D, Wang YL, Langenberger D, et al:
microRNA target predictions across seven Drosophila species
and comparison to mammalian targets. PLoS Comput Biol.
1:e132005.PubMed/NCBI
|
32
|
Lewis BP, Shih IH, Jones-Rhoades MW, et
al: Prediction of mammalian microRNA targets. Cell. 115:787–798.
2003. View Article : Google Scholar : PubMed/NCBI
|
33
|
Lewis BP, Burge CB and Bartel DP:
Conserved seed pairing, often flanked by adenosines, indicates that
thousands of human genes are microRNA targets. Cell. 120:15–20.
2005. View Article : Google Scholar
|
34
|
Kovalchuk O, Filkowski J, Meservy J, et
al: Involvement of microRNA-451 in resistance of the MCF-7 breast
cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther.
7:2152–2159. 2008. View Article : Google Scholar : PubMed/NCBI
|
35
|
Xia L, Zhang D, Du R, et al: MiR-15b and
miR-16 modulate multidrug resistance by targeting BCL2 in human
gastric cancer cells. Int J Cancer. 123:372–379. 2008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Lu J, Getz G, Miska EA, et al: MicroRNA
expression profiles classify human cancers. Nature. 435:834–838.
2005. View Article : Google Scholar : PubMed/NCBI
|
37
|
Pallante P, Visone R, Ferracin M, et al:
MicroRNA deregulation in human thyroid papillary carcinomas. Endocr
Relat Cancer. 13:497–508. 2006. View Article : Google Scholar : PubMed/NCBI
|
38
|
Miller TE, Ghoshal K, Ramaswamy B, et al:
MicroRNA-221/222 confers tamoxifen resistance in breast cancer by
targeting p27Kip1. J Biol Chem. 283:29897–29903. 2008. View Article : Google Scholar : PubMed/NCBI
|
39
|
Bhatnagar N, Li X, Padi SK, et al:
Downregulation of miR-205 and miR-31 confers resistance to
chemotherapy-induced apoptosis in prostate cancer cells. Cell Death
Dis. 1:e1052010. View Article : Google Scholar : PubMed/NCBI
|
40
|
Wang XC, Tian LL, Wu HL, et al: Expression
of miRNA-130a in nonsmall cell lung cancer. Am J Med Sci.
340:385–388. 2010. View Article : Google Scholar : PubMed/NCBI
|
41
|
Chen Y and Gorski DH: Regulation of
angiogenesis through a microRNA (miR-130a) that down-regulates
antiangiogenic homeobox genes GAX and HOXA5. Blood. 111:1217–1226.
2008. View Article : Google Scholar : PubMed/NCBI
|
42
|
Cui XY, Guo YJ and Yao HR: Analysis of
microRNA in drug-resistant breast cancer cell line MCF-7/ADR. Nan
Fang Yi Ke Da Xue Xue Bao. 28:1813–1815. 2008.(In Chinese).
|
43
|
Naumann RW: The role of the
phosphatidylinositol 3-kinase (PI3K) pathway in the development and
treatment of uterine cancer. Gynecol Oncol. 123:411–420. 2011.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Sherbakova EA, Stromskaia TP, Rybalkina
EIu, et al: Role of PTEN protein in multidrug resistance of
prostate cancer cells. Mol Biol (Mosk). 42:487–493. 2008.(In
Russian).
|