1
|
Laird PW: Cancer epigenetics. Hum Mol
Genet. 14:65–76. 2005. View Article : Google Scholar
|
2
|
Robertson KD: DNA methylation and human
disease. Nat Rev Genet. 6:597–610. 2005. View Article : Google Scholar : PubMed/NCBI
|
3
|
Bender CM, Zingg JM and Jones PA: DNA
methylation as a target for drug design. Pharm Res. 15:175–187.
1998. View Article : Google Scholar : PubMed/NCBI
|
4
|
Natsume A, Wakabayashi T, Tsujimura K,
Shimato S, Ito M, Kuzushima K, Kondo Y, Sekido Y, Kawatsura H,
Narita Y and Yoshida J: The DNA demethylating agent
5-aza-2′-deoxycytidine activates NY-ESO-1 antigenicity in
orthotopic human glioma. Int J Cancer. 122:2542–2553. 2008.
|
5
|
Glazer RI and Knode MC:
1-beta-D-arabinosyl-5-azacytosine. Cytocidal activity and effects
on the synthesis and methylation of DNA in human colon carcinoma
cells. Mol Pharmacol. 26:381–387. 1984.PubMed/NCBI
|
6
|
Issa JP and Kantarjian H: Azacitidine. Nat
Rev Drug Discov Suppl. S6–S7. 2005. View
Article : Google Scholar
|
7
|
Kuendgen A and Lübbert M: Current status
of epigenetic treatment in myelodysplastic syndromes. Ann Hematol.
87:601–611. 2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Haaf T: The effects of 5-azacytidine and
5-azadeoxycytidine on chromosome structure and function:
implications for methylation-associated cellular processes.
Pharmacol Ther. 65:19–46. 1995. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kiziltepe T, Hideshima T, Catley L, Raje
N, Yasui H, Shiraishi N, Okawa Y, Ikeda H, Vallet S, Pozzi S, et
al: 5-Azacytidine, a DNA methyltransferase inhibitor, induces
ATR-mediated DNA double-strand break responses, apoptosis, and
synergistic cytotoxicity with doxorubicin and bortezomib against
multiple myeloma cells. Mol Cancer Ther. 6:1718–1727. 2007.
View Article : Google Scholar
|
10
|
Wang C, Zhang Y, Liang J, Shan G, Wang Y
and Shi Q: Impacts of ascorbic acid and thiamine supplementation at
different concentrations on lead toxicity in testis. Clin Chim
Acta. 370:82–88. 2006. View Article : Google Scholar : PubMed/NCBI
|
11
|
Chai G, Li L, Zhou W, Wu L, Zhao Y, Wang
D, Lu S, Yu Y, Wang H, McNutt MA, et al: HDAC inhibitors act with
5-aza-2′-deoxycytidine to inhibit cell proliferation by suppressing
removal of incorporated abases in lung cancer cells. PLoS One.
3:e24452008.
|
12
|
Jiemjit A, Fandy TE, Carraway H, Bailey
KA, Baylin S, Herman JG and Gore SD: p21(WAF1/CIP1)
induction by 5-azacytosine nucleosides requires DNA damage.
Oncogene. 27:3615–3623. 2008.
|
13
|
Fujii S, Ito K, Ito Y and Ochiai A:
Enhancer of zeste homologue 2 (EZH2) down-regulates RUNX3 by
increasing histone H3 methylation. J Biol Chem. 22:17324–17332.
2008. View Article : Google Scholar : PubMed/NCBI
|
14
|
Fan H, Zhao ZJ, Cheng YC, Shan YF, Lu ZH,
Zhang JQ, Xie W and Fan H: Gene induction and apoptosis in human
hepatocellular carcinoma cells SMMC-7721 exposed to
5-aza-2′-deoxycytidine. Chin Med J (Engl). 120:1626–1631.
2007.PubMed/NCBI
|
15
|
Yang H, Hoshino K, Sanchez-Gonzalez B,
Kantarjian H and Garcia-Manero G: Antileukemia activity of the
combination of 5-aza-2′-deoxycytidine with valproic acid. Leuk Res.
29:739–748. 2005.PubMed/NCBI
|
16
|
Gomyo Y, Sasaki J, Branch C, Roth JA and
Mukhopadhyay T: 5-aza-2′-deoxycytidine upregulates caspase-9
expression cooperating with p53-induced apoptosis in human lung
cancer cells. Oncogene. 23:6779–6787. 2004.
|
17
|
Carter BZ, Kornblau SM, Tsao T, Wang RY,
Schober WD, Milella M, Sung HG, Reed JC and Andreeff M:
Caspase-independent cell death in AML: caspase inhibition in vitro
with pan-caspase inhibitors or in vivo by XIAP or Survivin does not
affect cell survival or prognosis. Blood. 102:4179–4186. 2003.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Shang D, Ito N, Kamoto T and Ogawa O:
Demethylating agent 5-Aza-2′-deoxycytidine enhances susceptibility
of renal cell carcinoma to paclitaxel. Urology. 69:1007–1012.
2007.
|
19
|
Wang H, Zhao Y, Li L, McNutt MA, Wu L, Lu
S, Yu Y, Zhou W, Feng J, Chai G, et al: An ATM- and Rad3-related
(ATR) signaling pathway and a phosphorylation-acetylation cascade
are involved in activation of p53/p21Waf1/Cip1 in response to
5-aza-2′-deoxycytidine treatment. J Biol Chem. 283:2564–2574.
2008.PubMed/NCBI
|
20
|
Shi SL, Wang YY, Liang Y and Li QF:
Effects of tachyplesin and n-sodium butyrate on proliferation and
gene expression of human gastric adenocarcinoma cell line BGC-823.
World J Gastroenterol. 12:1694–1698. 2006.PubMed/NCBI
|
21
|
Karpf AR, Moore BC, Ririe TO and Jones DA:
Activation of the p53 DNA damage response pathway after inhibition
of DNA methyltransferase by 5-aza-2′-deoxycytidine. Mol Pharmacol.
59:751–757. 2001.PubMed/NCBI
|
22
|
Nieto M, Samper E, Fraga MF, González de
Buitrago G, Esteller M and Serrano M: The absence of p53 is
critical for the induction of apoptosis by 5-aza-2′-deoxycytidine.
Oncogene. 23:735–743. 2004.PubMed/NCBI
|
23
|
Nagahama Y, Ishimaru M, Osaki M, Inoue T,
Maeda A, Nakada C, Moriyama M, Sato K, Oshimura M and Ito H:
Apoptotic pathway induced by transduction of RUNX3 in the human
gastric carcinoma cell line MKN-1. Cancer Sci. 99:23–30.
2008.PubMed/NCBI
|
24
|
Jung Y, Park J and Kim TY, Park JH, Jong
HS, Im SA, Robertson KD, Bang YJ and Kim TY: Potential advantages
of DNA methyltransferase 1 (DNMT1)-targeted inhibition for cancer
therapy. J Mol Med. 85:1137–1148. 2007. View Article : Google Scholar : PubMed/NCBI
|
25
|
Schmelz K, Wagner M, Dörken B and Tamm I:
5-Aza-2′-deoxycytidine induces p21WAF expression by
demethylation of p73 leading to p53-independent apoptosis in
myeloid leukemia. Int J Cancer. 114:683–695. 2005.
|
26
|
Zhu YM, Huang Q, Lin J, Hu Y, Chen J and
Lai MD: Expression of human DNA methyltransferase 1 in colorectal
cancer tissues and their corresponding distant normal tissues. Int
J Colorectal Dis. 22:661–666. 2007. View Article : Google Scholar : PubMed/NCBI
|
27
|
Park HJ, Yu E and Shim YH: DNA
methyltransferase expression and DNA hypermethylation in human
hepatocellular carcinoma. Cancer Lett. 233:271–278. 2006.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Roll JD, Rivenbark AG, Jones WD and
Coleman WB: DNMT3b overexpression contributes to a hypermethylator
phenotype in human breast cancer cell lines. Mol Cancer. 7:152008.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Jüttermann R, Li E and Jaenisch R:
Toxicity of 5-aza-2′-deoxycytidine to mammalian cells is mediated
primarily by covalent trapping of DNA methyltransferase rather than
DNA demethylation. Proc Natl Acad Sci USA. 91:11797–11801.
1994.
|
30
|
Oka M, Meacham AM, Hamazaki T, Rodić N,
Chang LJ and Terada N: De novo DNA methyltransferases Dnmt3a and
Dnmt3b primarily mediate the cytotoxic effect of
5-aza-2′-deoxycytidine. Oncogene. 24:3091–3099. 2005.PubMed/NCBI
|
31
|
Schneider-Stock R, Diab-Assef M, Rohrbeck
A, Foltzer-Jourdainne C, Boltze C, Hartig R, Schönfeld P, Roessner
A and Gali-Muhtasib H: 5-Aza-cytidine is a potent inhibitor of DNA
methyltransferase 3a and induces apoptosis in HCT-116 colon cancer
cells via Gadd45- and p53-dependent mechanisms. J Pharmacol Exp
Ther. 312:525–536. 2005. View Article : Google Scholar : PubMed/NCBI
|
32
|
Palii SS, Van Emburgh BO, Sankpal UT,
Brown KD and Robertson KD: DNA methylation inhibitor
5-Aza-2′-deoxycytidine induces reversible genome-wide DNA damage
that is distinctly influenced by DNA methyltransferases 1 and 3B.
Mol Cell Biol. 28:752–771. 2008.
|