1
|
Terry P, Giovannucci E, Michels KB,
Bergkvist L, Hansen H, Holmberg L and Wolk A: Fruit, vegetables,
dietary fiber, and risk of colorectal cancer. J Natl Cancer Inst.
93:525–533. 2001. View Article : Google Scholar : PubMed/NCBI
|
2
|
Surh YJ: Cancer chemoprevention with
dietary phytochemicals. Nat Rev Cancer. 3:768–780. 2003. View Article : Google Scholar : PubMed/NCBI
|
3
|
Liu RH: Potential synergy of
phytochemicals in cancer prevention: mechanism of action. J Nutr.
134:S3479–S3485. 2004.PubMed/NCBI
|
4
|
Kornberg A and Baker TA: DNA replication.
W.D. Freeman and Co; New York, NY: Chapter 6. 2nd edit. pp.
197–225. 1992
|
5
|
DePamphilis ML: DNA replication in
eukaryotic cells. Cold Spring Harbor Laboratory Press; Cold Spring
Harbor, NY: 1996
|
6
|
Hübscher U, Maga G and Spadari S:
Eukaryotic DNA polymerases. Annu Rev Biochem. 71:133–163. 2002.
|
7
|
Bebenek K and Kunkel TA: Functions of DNA
polymerases. Adv Protein Chem. 69:137–165. 2004. View Article : Google Scholar
|
8
|
Takata K, Shimizu T, Iwai S and Wood RD:
Human DNA polymerase N (POLN) is a low fidelity enzyme capable of
error-free bypass of 5S-thymine glycol. J Biol Chem.
281:23445–23455. 2006. View Article : Google Scholar : PubMed/NCBI
|
9
|
Loeb LA and Monnat RJ Jr: DNA polymerases
and human disease. Nat Rev Genet. 9:594–604. 2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Mizushina Y, Watanabe I, Ohta K, Takemura
M, Sahara H, Takahashi N, Gasa S, Sugawara F, Matsukage A, Yoshida
S and Sakaguchi K: Studies on inhibitors of mammalian DNA
polymerase α and β: sulfolipids from a pteridophyte, Athyrium
niponicum. Biochem Pharmacol. 55:537–541. 1998.
|
11
|
Ohta K, Mizushina Y, Hirata N, Takemura M,
Sugawara F, Matsukage A, Yoshida S and Sakaguchi K:
Sulfoquinovosyldiacylglycerol, KM043, a new potent inhibitor of
eukaryotic DNA polymerases and HIV-reverse transcriptase type 1
from a marine red alga, Gigartina tenella. Chem Pharm Bull
(Tokyo). 46:684–686. 1998. View Article : Google Scholar : PubMed/NCBI
|
12
|
Roughan PG and Batt RD: The glycerolipid
composition of leaves. Phytochemistry. 8:363–369. 1969. View Article : Google Scholar
|
13
|
Sugawara T and Miyazawa T: Separation and
determination of glycolipids from edible plant sources by
high-performance liquid chromatography and evaporative
light-scattering detection. Lipids. 34:1231–1237. 1999.PubMed/NCBI
|
14
|
Yunoki K, Sato M, Seki K, Ohkubo T, Tanaka
Y and Ohnishi M: Simultaneous quantification of plant
glyceroglycolipids including sulfoquinovosyldiacylglycerol by
HPLC-ELSD with binary gradient elution. Lipids. 44:77–83. 2009.
View Article : Google Scholar
|
15
|
Kuriyama I, Musumi K, Yonezawa Y, Takemura
M, Maeda N, Iijima H, Hada T, Yoshida H and Mizushina Y: Inhibitory
effects of glycolipids fraction from spinach on mammalian DNA
polymerase activity and human cancer cell proliferation. J Nutr
Biochem. 16:594–601. 2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Gabison A, Shmeeda H and Barenholz Y:
Pharmacokinetics of pegylated liposomal Doxorubicin: review of
animal and human studies. Clin Pharmacokinet. 42:419–436. 2003.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Unezaki S, Maruyama K, Ishida O, Takahashi
N and Iwatsuru M: Enhanced tumor targeting of Doxorubicin by
ganglioside GM1-bearing long-circulating liposomes. J Drug Target.
1:287–292. 1993. View Article : Google Scholar : PubMed/NCBI
|
18
|
Maruyama K, Yuda T, Okamoto A, Kojima S,
Suginaka A and Iwatsuru M: Prolonged circulation time in
vivo of large unilamellar liposomes composed of distearoyl
phosphatidylcholine and cholesterol containing amphipathic poly
(ethylene glycol). Biochim Biophys Acta. 1128:44–49. 1992.
|
19
|
Gabizon A and Papahadjopoulos D: Liposome
formulation with prolonged circulation time in blood and enhanced
uptake by tumors. Proc Natl Acad Sci USA. 85:6949–6953. 1988.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Vyas SP, Singh A and Sihorkar V:
Ligand-receptor-mediated drug delivery: an emerging paradigm in
cellular drug targeting. Crit Rev Ther Drug Carrier Syst. 18:1–76.
2001.PubMed/NCBI
|
21
|
Willis M and Forssen E: Ligand-targeted
liposomes. Adv Drug Deliv Rev. 29:249–271. 1998. View Article : Google Scholar
|
22
|
Yamazaki N, Kojima S and Yokoyama H:
Biomedical nanotechnology for active drug delivery systems by
applying sugar-chain molecular functions. Curr Appl Phys.
5:112–117. 2005. View Article : Google Scholar
|
23
|
Yamazaki N: Active targeting DDS.
Farumashia. 42:125–129. 2006.
|
24
|
Ehrhardt C, Kneuer C and Bakowsky U:
Selectin-an emerging target for drug delivery. Adv Drug Deliv Rev.
56:527–549. 2004. View Article : Google Scholar : PubMed/NCBI
|
25
|
Dodd RB and Drickamer K: Lectin-like
proteins in model organisms: implications for evolution of
carbohydrate-binding activity. Glycobiology. 11:R71–R79. 2001.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Kilpatrick DC: Animal lectins: a
historical introduction and overview. Biochim Biophys Acta.
1572:187–197. 2002. View Article : Google Scholar : PubMed/NCBI
|
27
|
Bevilacqua MP, Stengelin S, Gimbrone MA Jr
and Seed B: Endothelial leukocyte adhesion molecule 1: an inducible
receptor for neutrophils related to complement regulatory proteins
and lectins. Science. 243:1160–1165. 1989. View Article : Google Scholar : PubMed/NCBI
|
28
|
Vestweber D and Blanks JE: Mechanisms that
regulate the function of the selectins and their ligands. Physiol
Rev. 79:181–213. 1999.PubMed/NCBI
|
29
|
Hirai M, Minematsu H, Kondo N, Oie K,
Igarashi K and Yamazaki N: Accumulation of liposome with Sialyl
Lewis X to inflammation and tumor region: application to in
vivo bio-imaging. Biochem Biophys Res Commun. 353:553–558.
2007. View Article : Google Scholar : PubMed/NCBI
|
30
|
Myobatake Y, Takeuchi T, Kuramochi K,
Kuriyama I, Ishido T, Hirano K, Sugawara F, Yoshida H and Mizushina
Y: Pinophilins A and B, inhibitors of mammalian A-, B-, and
Y-family DNA polymerases and human cancer cell proliferation. J Nat
Prod. 75:135–141. 2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Mizushina Y, Tanaka N, Yagi H, Kurosawa T,
Onoue M, Seto H, Horie T, Aoyagi N, Yamaoka M, Matsukage A, et al:
Fatty acids selectively inhibit eukaryotic DNA polymerase
activities in vitro. Biochim Biophys Acta. 1308:256–262. 1996.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Mizushina Y, Yoshida S, Matsukage A and
Sakaguchi K: The inhibitory action of fatty acids on DNA polymerase
β. Biochim Biophys Acta. 1336:509–521. 1997.
|
33
|
Umeda S, Muta T, Ohsato T, Takamatsu C,
Hamasaki N and Kang D: The D-loop structure of human mtDNA is
destabilized directly by 1-methyl-4-phenylpyridinium ion (MPP+), a
parkinsonism-causing toxin. Eur J Biochem. 267:200–206.
2000.PubMed/NCBI
|
34
|
Ogawa A, Murate T, Suzuki M, Nimura Y and
Yoshida S: Lithocholic acid, a putative tumor promoter, inhibits
mammalian DNA polymerase β. Jpn J Cancer Res. 89:1154–1159.
1998.PubMed/NCBI
|
35
|
Tamiya-Koizumi K, Murate T, Suzuki M,
Simbulan CG, Nakagawa M, Takamura M, Furuta K, Izuta S and Yoshida
S: Inhibition of DNA primase by sphingosine and its analogues
parallels with their growth suppression of cultured human leukemic
cells. Biochem Mol Biol Int. 41:1179–1189. 1997.PubMed/NCBI
|
36
|
Nakayama C and Saneyoshi M: Inhibitory
effects of 9-β-D-xylofuranosyladenine 5′-triphosphate on
DNA-dependent RNA polymerase I and II from cherry salmon
(Oncorhynchus masou). J Biochem. 97:1385–1389. 1985.
|
37
|
Soltis DA and Uhlenbeck OC: Isolation and
characterization of two mutant forms of T4 polynucleotide kinase. J
Biol Chem. 257:11332–11339. 1982.PubMed/NCBI
|
38
|
Lu BC and Sakaguchi K: An endo-exonuclease
from meiotic tissues of the basidiomycete Coprinus cinereus:
its purification and characterization. J Biol Chem.
266:21060–21066. 1991.PubMed/NCBI
|
39
|
Mosmann T: Rapid colorimetric assay for
cellular growth and survival: application to proliferation and
cytotoxicity assays. J Immunol Methods. 65:55–63. 1983. View Article : Google Scholar : PubMed/NCBI
|
40
|
Welply JK, Abbas SZ, Scudder P, Keene JL,
Broschat K, Casnocha S, Gorka C, Steininger C, Howard SC and
Schmuke JJ: Multivalent sialyl-LeX: potent inhibitors of
E-selectin-mediated cell adhesion; reagent for staining activated
endothelial cells. Glycobiology. 4:259–265. 1994. View Article : Google Scholar : PubMed/NCBI
|
41
|
Pober JS, Bevilacqua MP, Mendrick DL,
Lapierre LA, Fiers W and Gimbrone MA Jr: Two distinct monokines,
interleukin 1 and tumor necrosis factor, each independently induce
biosynthesis and transient expression of the same antigen on the
surface of cultured human vascular endothelial cells. J Immunol.
136:1680–1687. 1986.
|
42
|
Sugawara T and Miyazawa T: Digestion of
plant monogalactosyldiacylglycerol and digalactosyldiacylglycerol
in rat alimentary canal. J Nutr Biochem. 11:147–152. 2000.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Drummond DC, Meyer O, Hong K, Kirpotin DB
and Papahadjopoulos D: Optimizing liposome for delivery of
chemotherapeutic agents to solid tumors. Pharmacol Rev. 51:691–743.
1999.PubMed/NCBI
|
44
|
Yamazaki N, Kodama M and Gabius HJ:
Neoglycoprotein–liposome and lectin-liposome conjugates as tools
for carbohydrate recognition research. Methods Enzymol. 242:56–65.
1994.
|