1
|
Greim H, Trulzsch D, Czygan P, Rudick J,
Hutterer F, Schaffner F and Popper H: Mechanism of cholestasis. 6.
Bile acids in human livers with or without biliary obstruction.
Gastroenterology. 63:846–850. 1972.PubMed/NCBI
|
2
|
Qiao L, Studer E, Leach K, McKinstry R,
Gupta S, Decker R, Kukreja R, Valerie K, Nagarkatti P, El Deiry W,
et al: Deoxycholic acid (DCA) causes ligand-independent activation
of epidermal growth factor receptor (EGFR) and FAS receptor in
primary hepatocytes: inhibition of EGFR/mitogen-activated protein
kinase-signaling module enhances DCA-induced apoptosis. Mol Biol
Cell. 12:2629–2645. 2001. View Article : Google Scholar
|
3
|
Loddenkemper C, Keller S, Hanski ML, Cao
M, Jahreis G, Stein H, Zeitz M and Hanski C: Prevention of
colitis-associated carcinogenesis in a mouse model by diet
supplementation with ursodeoxycholic acid. Int J Cancer.
118:2750–2757. 2006. View Article : Google Scholar
|
4
|
Alberts DS, Martinez ME, Hess LM, Einspahr
JG, Green SB, Bhattacharyya AK, Guillen J, Krutzsch M, Batta AK,
Salen G, et al: Phase III trial of ursodeoxycholic acid to prevent
colorectal adenoma recurrence. J Natl Cancer Inst. 97:846–853.
2005. View Article : Google Scholar : PubMed/NCBI
|
5
|
Qiao D, Stratagouleas ED and Martinez JD:
Activation and role of mitogen-activated protein kinases in
deoxycholic acid-induced apoptosis. Carcinogenesis. 22:35–41. 2001.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Rust C, Karnitz LM, Paya CV, Moscat J,
Simari RD and Gores GJ: The bile acid taurochenodeoxycholate
activates a phosphatidylinositol 3-kinase-dependent survival
signaling cascade. J Biol Chem. 275:20210–20216. 2000. View Article : Google Scholar : PubMed/NCBI
|
7
|
Higuchi H and Gores GJ: Bile acid
regulation of hepatic physiology: IV. Bile acids and death
receptors. Am J Physiol Gastrointest Liver Physiol. 284:G734–G738.
2003. View Article : Google Scholar : PubMed/NCBI
|
8
|
Higuchi H, Grambihler A, Canbay A, Bronk
SF and Gores GJ: Bile acids up-regulate death receptor
5/TRAIL-receptor 2 expression via a c-Jun N-terminal
kinase-dependent pathway involving Sp1. J Biol Chem. 279:51–60.
2004. View Article : Google Scholar : PubMed/NCBI
|
9
|
Higuchi H, Bronk SF, Taniai M, Canbay A
and Gores GJ: Cholestasis increases tumor necrosis factor-related
apoptotis-inducing ligand (TRAIL)-R2/DR5 expression and sensitizes
the liver to TRAIL-mediated cytotoxicity. J Pharmacol Exp Ther.
303:461–467. 2002. View Article : Google Scholar
|
10
|
Higuchi H, Bronk SF, Takikawa Y, Werneburg
N, Takimoto R, El-Deiry W and Gores GJ: The bile acid
glycochenodeoxycholate induces trail-receptor 2/DR5 expression and
apoptosis. J Biol Chem. 276:38610–38618. 2001. View Article : Google Scholar : PubMed/NCBI
|
11
|
Xia Z, Dickens M, Raingeaud J, Davis RJ
and Greenberg ME: Opposing effects of ERK and JNK-p38 MAP kinases
on apoptosis. Science. 270:1326–1331. 1995. View Article : Google Scholar : PubMed/NCBI
|
12
|
Qiao L, Han SI, Fang Y, Park JS, Gupta S,
Gilfor D, Amorino G, Valerie K, Sealy L, Engelhardt JF, et al: Bile
acid regulation of C/EBPbeta, CREB, and c-Jun function, via the
extracellular signal-regulated kinase and c-Jun NH2-terminal kinase
pathways, modulates the apoptotic response of hepatocytes. Mol Cell
Biol. 23:3052–3066. 2003. View Article : Google Scholar : PubMed/NCBI
|
13
|
Looby E, Abdel-Latif MM, Athie-Morales V,
Duggan S, Long A and Kelleher D: Deoxycholate induces COX-2
expression via Erk1/2-, p38-MAPK and AP-1-dependent mechanisms in
esophageal cancer cells. BMC Cancer. 9:1902009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Baek MK, Park JS, Park JH, Kim MH, Kim HD,
Bae WK, Chung IJ, Shin BA and Jung YD: Lithocholic acid upregulates
uPAR and cell invasiveness via MAPK and AP-1 signaling in colon
cancer cells. Cancer Lett. 290:123–128. 2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Liao M, Zhao J, Wang T, Duan J, Zhang Y
and Deng X: Role of bile salt in regulating Mcl-1 phosphorylation
and chemoresistance in hepatocellular carcinoma cells. Mol Cancer.
10:442011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Oka H, Chatani Y, Hoshino R, Ogawa O,
Kakehi Y, Terachi T, Okada Y, Kawaichi M, Kohno M and Yoshida O:
Constitutive activation of mitogen-activated protein (MAP) kinases
in human renal cell carcinoma. Cancer Res. 55:4182–4187.
1995.PubMed/NCBI
|
17
|
Sivaraman VS, Wang H, Nuovo GJ and Malbon
CC: Hyperexpression of mitogen-activated protein kinase in human
breast cancer. J Clin Invest. 99:1478–1483. 1997. View Article : Google Scholar : PubMed/NCBI
|
18
|
Lim SC, Duong HQ, Choi JE, Lee TB, Kang
JH, Oh SH and Han SI: Lipid raft-dependent death receptor 5 (DR5)
expression and activation are critical for ursodeoxycholic
acid-induced apoptosis in gastric cancer cells. Carcinogenesis.
32:723–731. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Lim SC, Choi JE, Kang HS and Si H:
Ursodeoxycholic acid switches oxaliplatin-induced necrosis to
apoptosis by inhibiting reactive oxygen species production and
activating p53-caspase 8 pathway in HepG2 hepatocellular carcinoma.
Int J Cancer. 126:1582–1595. 2010.
|
20
|
Zhao Y, Zhao X, Yang B, Neuzil J and Wu K:
alpha-Tocopheryl succinate-induced apoptosis in human gastric
cancer cells is modulated by ERK1/2 and c-Jun N-terminal kinase in
a biphasic manner. Cancer Lett. 247:345–352. 2007. View Article : Google Scholar
|
21
|
Schweyer S, Soruri A, Meschter O, Heintze
A, Zschunke F, Miosge N, Thelen P, Schlott T, Radzun HJ and Fayyazi
A: Cisplatin-induced apoptosis in human malignant testicular germ
cell lines depends on MEK/ERK activation. Br J Cancer. 91:589–598.
2004. View Article : Google Scholar : PubMed/NCBI
|
22
|
Singh S, Upadhyay AK, Ajay AK and Bhat MK:
p53 regulates ERK activation in carboplatin induced apoptosis in
cervical carcinoma: a novel target of p53 in apoptosis. FEBS Lett.
581:289–295. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Wang X, Martindale JL and Holbrook NJ:
Requirement for ERK activation in cisplatin-induced apoptosis. J
Biol Chem. 275:39435–39443. 2000. View Article : Google Scholar
|
24
|
Woessmann W, Chen X and Borkhardt A:
Ras-mediated activation of ERK by cisplatin induces cell death
independently of p53 in osteosarcoma and neuroblastoma cell lines.
Cancer Chemother Pharmacol. 50:397–404. 2002. View Article : Google Scholar : PubMed/NCBI
|
25
|
Amran D, Sancho P, Fernandez C, Esteban D,
Ramos AM, de Blas E, Gomez M, Palacios MA and Aller P:
Pharmacological inhibitors of extracellular signal-regulated
protein kinases attenuate the apoptotic action of cisplatin in
human myeloid leukemia cells via glutathione-independent reduction
in intracellular drug accumulation. Biochim Biophys Acta.
1743:269–279. 2005. View Article : Google Scholar
|
26
|
Im E and Martinez JD: Ursodeoxycholic acid
(UDCA) can inhibit deoxycholic acid (DCA)-induced apoptosis via
modulation of EGFR/Raf-1/ERK signaling in human colon cancer cells.
J Nutr. 134:483–486. 2004.PubMed/NCBI
|
27
|
Lee HY, Crawley S, Hokari R, Kwon S and
Kim YS: Bile acid regulates MUC2 transcription in colon cancer
cells via positive EGFR/PKC/Ras/ERK/CREB,
PI3K/Akt/IkappaB/NF-kappaB and p38/MSK1/CREB pathways and negative
JNK/c-Jun/AP-1 pathway. Int J Oncol. 36:941–953. 2010.PubMed/NCBI
|