1
|
Asahara T, Murohara T, Sullivan A, et al:
Isolation of putative progenitor endothelial cells for
angiogenesis. Science. 275:964–967. 1997. View Article : Google Scholar : PubMed/NCBI
|
2
|
Asahara T, Masuda H, Takahashi T, et al:
Bone marrow origin of endothelial progenitor cells responsible for
postnatal vasculogenesis in physiological and pathological
neovascularization. Circ Res. 85:221–218. 1999. View Article : Google Scholar
|
3
|
Mund JA and Case J: The role of
circulating endothelial progenitor cells in tumor angiogenesis.
Curr Stem Cell Res Ther. 6:115–121. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
George AL, Bangalore-Prakash P, Rajoria S,
et al: Endothelial progenitor cell biology in disease and tissue
regeneration. J Hematol Oncol. 24:242011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Yoder MC: Defining human endothelial
progenitor cells. J Thromb Haemost. 7:49–52. 2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Doyle B, Metharom P and Caplice NM:
Endothelial progenitor cells. Endothelium. 13:403–410. 2006.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Chao H and Hirschi KK: Hemato-vascular
origins of endothelial progenitor cells? Microvasc Res. 79:169–173.
2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhu AX, Duda DG, Sahani DV, et al: HCC and
angiogenesis: possible targets and future directions. Nat Rev Clin
Oncol. 8:292–301. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kim HC, Chung JW, Lee W, et al:
Recognizing extrahepatic collateral vessels that supply
hepatocellular carcinoma to avoid complications of transcatheter
arterial chemoembolization. Radiographics. 25:S25–S39. 2005.
View Article : Google Scholar
|
10
|
Lyden D, Hattori K, Dias S, et al:
Impaired recruitment of bone-marrow-derived endothelial and
hematopoietic precursor cells blocks tumor angiogenesis and growth.
Nat Med. 7:1194–1201. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Mellick AS, Plummer PN, Nolan DJ, et al:
Using the transcription factor inhibitor of DNA binding 1 to
selectively target endothelial progenitor cells offers novel
strategies to inhibit tumor angiogenesis and growth. Cancer Res.
70:7273–7282. 2010. View Article : Google Scholar
|
12
|
Rigolin GM, Maffei R, Rizzotto L, et al:
Circulating endothelial cells in patients with chronic lymphocytic
leukemia: clinical-prognostic and biologic significance. Cancer.
116:1926–1937. 2010. View Article : Google Scholar
|
13
|
Hagensen MK, Raarup MK, Mortensen MB, et
al: Circulating endothelial progenitor cells do not contribute to
regeneration of endothelium after murine arterial injury.
Cardiovasc Res. 93:223–231. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wickersheim A, Kerber M, de Miguel LS, et
al: Endothelial progenitor cells do not contribute to tumor
endothelium in primary and metastatic tumors. Int J Cancer.
125:1771–1777. 2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Sieghart W, Fellner S, Reiberger T, et al:
Differential role of circulating endothelial progenitor cells in
cirrhotic patients with or without hepatocellular carcinoma. Dig
Liver Dis. 41:902–906. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ho JW, Pang RW, Lau C, et al: Significance
of circulating endothelial progenitor cells in hepatocellular
carcinoma. Hepatology. 44:836–843. 2006. View Article : Google Scholar : PubMed/NCBI
|
17
|
Yu D, Sun X, Qiu Y, et al: Identification
and clinical significance of mobilized endothelial progenitor cells
in tumor vasculogenesis of hepatocellular carcinoma. Clin Cancer
Res. 13:3814–3824. 2007. View Article : Google Scholar : PubMed/NCBI
|
18
|
Sangidorj O, Yang SH, Jang HR, et al: Bone
marrow-derived endothelial progenitor cells confer renal protection
in a murine chronic renal failure model. Am J Physiol Renal
Physiol. 299:F325–F335. 2010. View Article : Google Scholar
|
19
|
Hu J, Dong A, Fernandez-Ruiz V, et al:
Blockade of Wnt signaling inhibits angiogenesis and tumor growth in
hepatocellular carcinoma. Cancer Res. 69:6951–6959. 2009.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Peichev M, Naiyer AJ, Pereira D, et al:
Expression of VEGFR-2 and AC133 by circulating human
CD34+ cells identifies a population of functional
endothelial precursors. Blood. 95:952–958. 2000.PubMed/NCBI
|
21
|
Massa M, Rosti V, Ramajoli I, et al:
Circulating CD34+, CD133+, and vascular
endothelial growth factor receptor 2-positive endothelial
progenitor cells in myelofibrosis with myeloid metaplasia. J Clin
Oncol. 23:5688–5695. 2005.
|
22
|
Suriano R, Chaudhuri D, Johnson RS, et al:
17Beta-estradiol mobilizes bone marrow-derived endothelial
progenitor cells to tumors. Cancer Res. 68:6038–6042. 2008.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Schmitz V, Tirado-Ledo L, Tiemann K, et
al: Establishment of an orthotopic tumor model for hepatocellular
carcinoma and non-invasive in vivo tumour imaging by high
resolution ultrasound in mice. J Hepatol. 40:787–791. 2004.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Ahn JB, Rha SY, Shin SJ, et al:
Circulating endothelial progenitor cells (EPC) for tumor
vasculogenesis in gastric cancer patients. Cancer Lett.
288:124–132. 2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ding W, Mouzaki M, You H, et al:
CD133+ liver cancer stem cells from methionine adenosyl
transferase 1A-deficient mice demonstrate resistance to
transforming growth factor (TGF)-beta-induced apoptosis.
Hepatology. 49:1277–1286. 2009.
|
26
|
Zhu Z, Hao X, Yan M, et al: Cancer
stem/progenitor cells are highly enriched in
CD133+CD44+ population in hepatocellular
carcinoma. Int J Cancer. 126:2067–2078. 2010.PubMed/NCBI
|
27
|
Arbab AS, Pandit SD, Anderson SA, et al:
Magnetic resonance imaging and confocal microscopy studies of
magnetically labeled endothelial progenitor cells trafficking to
sites of tumor angiogenesis. Stem Cells. 24:671–687. 2006.
View Article : Google Scholar
|
28
|
Shirakawa K, Furuhata S, Watanabe I, et
al: Induction of vasculogenesis in breast cancer models. Br J
Cancer. 87:1454–1461. 2002. View Article : Google Scholar : PubMed/NCBI
|
29
|
Croll SD, Ransohoff RM, Cai N, et al:
VEGF-mediated inflammation precedes angiogenesis in adult brain.
Exp Neurol. 187:388–402. 2004. View Article : Google Scholar : PubMed/NCBI
|
30
|
Gehling UM, Ergun S, Schumacher U, et al:
In vitro differentiation of endothelial cells from AC133-positive
progenitor cells. Blood. 95:3106–3112. 2000.PubMed/NCBI
|
31
|
Messerini L, Novelli L and Comin CE:
Microvessel density and clinicopathological characteristics in
hepatitis C virus and hepatitis B virus related hepatocellular
carcinoma. J Clin Pathol. 57:867–871. 2004. View Article : Google Scholar : PubMed/NCBI
|
32
|
Pinzani M and Vizzutti F: Fibrosis and
cirrhosis reversibility: clinical features and implications. Clin
Liver Dis. 12:901–913. 2008. View Article : Google Scholar : PubMed/NCBI
|
33
|
Moon MH, Kim SY, Kim YJ, et al: Human
adipose tissue-derived mesenchymal stem cells improve postnatal
neovascularization in a mouse model of hindlimb ischemia. Cell
Physiol Biochem. 17:279–290. 2006. View Article : Google Scholar
|
34
|
Thomas J, O’Neill IV, Brian R, et al:
Mobilization of bone marrow-derived cells enhances the angiogenic
response to hypoxia without transdifferentiation into endothelial
cells. Circ Res. 97:1027–1035. 2005. View Article : Google Scholar : PubMed/NCBI
|
35
|
Hämmerling GJ and Ganss R: Vascular
integration of endothelial progenitors during multistep tumor
progression. Cell Cycle. 5:509–511. 2006.PubMed/NCBI
|
36
|
Nolan DJ, Ciarrocchi A, Mellick AS, et al:
Bone marrow-derived endothelial progenitor cells are a major
determinant of nascent tumor neovascularization. Genes Dev.
12:1546–1558. 2007. View Article : Google Scholar : PubMed/NCBI
|
37
|
He Y, Rajantie I, Ilmonen M, et al:
Preexisting lymphatic endothelium but not endothelial progenitor
cells are essential for tumor lymphangiogenesis and lymphatic
metastasis. Cancer Res. 64:3737–3740. 2004. View Article : Google Scholar : PubMed/NCBI
|
38
|
Ryschich E, Schmidt J, Hammerling GJ, et
al: Transformation of the microvascular system during multistage
tumorigenesis. Int J Cancer. 97:719–725. 2002. View Article : Google Scholar : PubMed/NCBI
|
39
|
Dar A, Domev H, Ben-Yosef O, et al:
Multipotent vasculogenic pericytes from human pluripotent stem
cells promote recovery of murine ischemic limb. Circulation.
125:87–99. 2012. View Article : Google Scholar : PubMed/NCBI
|
40
|
Poon RT, Lau C, Yu WC, et al: High serum
levels of vascular endothelial growth factor predict poor response
to transarterial chemoembolization in hepatocellular carcinoma: a
prospective study. Oncol Rep. 11:1077–1084. 2004.
|
41
|
Wang B, Xu H, Gao ZQ, et al: Increased
expression of vascular endothelial growth factor in hepatocellular
carcinoma after transcatheter arterial chemoembolization. Acta
Radiol. 49:523–529. 2008. View Article : Google Scholar
|
42
|
Shaked Y, Henke E, Roodhart JM, et al:
Rapid chemotherapy-induced acute endothelial progenitor cell
mobilization: implications for antiangiogenic drugs as
chemosensitizing agents. Cancer Cell. 14:263–273. 2008. View Article : Google Scholar
|
43
|
Pircher A, Kähler CM, Skvortsov S, et al:
Increased numbers of endothelial progenitor cells in peripheral
blood and tumor specimens in non-small cell lung cancer: a
methodological challenge and an ongoing debate on the clinical
relevance. Oncol Rep. 19:345–352. 2008.
|