Role of VEGF/VEGFR in the pathogenesis of leukemias and as treatment targets (Review)
- Authors:
- Guanhua Song
- Yanmei Li
- Guosheng Jiang
-
Affiliations: Key Laboratory for Tumor Immunology and Traditional Chinese Medicine Immunology, Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Department of Hemato-Oncology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Key Laboratory of Ministry of Health for Biotech-Drug, Key Laboratory for Modern Medicine and Technology of Shandong Province, Jinan, Shandong, P.R. China - Published online on: September 19, 2012 https://doi.org/10.3892/or.2012.2045
- Pages: 1935-1944
This article is mentioned in:
Abstract
Kerbel RS: Tumor angiogenesis. N Engl J Med. 358:2039–2049. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ellis LM and Hicklin DJ: VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer. 8:579–591. 2008. View Article : Google Scholar : PubMed/NCBI | |
Medinger M, Fischer N and Tzankov A: Vascular endothelial growth factor-related pathways in hemato-lymphoid malignancies. J Oncol. 2010:7297252010. View Article : Google Scholar | |
Aguayo A, Kantarjian HM, Estey EH, et al: Plasma vascular endothelial growth factor levels have prognostic significance in patients with acute myeloid leukemia but not in patients with myelodysplastic syndromes. Cancer. 95:1923–1930. 2002. View Article : Google Scholar | |
Zhu Z, Hattori K, Zhang H, et al: Inhibition of human leukemia in an animal model with human antibodies directed against vascular endothelial growth factor receptor 2. Correlation between antibody affinity and biological activity. Leukemia. 17:604–611. 2003. View Article : Google Scholar | |
Benouchan M and Colombo BM: Anti-angiogenic strategies for cancer therapy. Int J Oncol. 27:563–571. 2005.PubMed/NCBI | |
Ferrara N and Henzel WJ: Pituitary follicular cell secrete a novel heparin-binding growth factor specific for vascular endothelial cell. Biochem Biophys Res Commun. 161:8511989. View Article : Google Scholar : PubMed/NCBI | |
Ferrara N, Gerber HP and LeCouter J: The biology of VEGF and its receptors. Nat Med. 9:669–676. 2003. View Article : Google Scholar : PubMed/NCBI | |
Cao Y: Positive and negative modulation of angiogenesis by VEGFR1 ligands. Sci Signal. 2:re12009.PubMed/NCBI | |
Zhang L, Zhou F, Han W, et al: VEGFR-3 ligand-binding and kinase activity are required for lymphangiogenesis but not for angiogenesis. Cell Res. 20:1319–1331. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Hooper AT, Zhong Z, et al: The vascular endothelial growth factor receptor (VEGFR-1) supports growth and survival of human breast carcinoma. Int J Cancer. 119:1519–1529. 2006. View Article : Google Scholar : PubMed/NCBI | |
Autiero M, Luttun A, Tjwa M and Carmeliet P: Placental growth factor and its receptor, vascular endothelial growth factor receptor-1: novel targets for stimulation of ischemic tissue revascularization and inhibition of angiogenic and inflammatory disorders. J Thromb Haemost. 1:1356–1370. 2003. View Article : Google Scholar | |
Holmes K, Roberts OL, Thomas AM and Cross MJ: Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell Signal. 19:2003–2012. 2007. View Article : Google Scholar | |
Brekken RA, Overholser JP, Stastny VA, Waltenberger J, Minna JD and Thorpe PE: Selective inhibition of vascular endothelial growth factor (VEGF) receptor 2 (KDR/Flk-1) activity by a monoclonal anti-VEGF antibody blocks tumor growth in mice. Cancer Res. 60:5117–5124. 2000.PubMed/NCBI | |
Katoh O, Tauchi H, Kawaishi K, Kimura A and Satow Y: Expression of the vascular endothelial growth factor (VEGF) receptor gene, KDR, in hematopoietic cells and inhibitory effect of VEGF on apoptotic cell death caused by ionizing radiation. Cancer Res. 55:5687–5692. 1995.PubMed/NCBI | |
Cursiefen C, Chen L, Borges LP, et al: VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest. 113:1040–1050. 2004. View Article : Google Scholar : PubMed/NCBI | |
Adams J, Carder PJ, Downey S, et al: Vascular endothelial growth factor (VEGF) in breast cancer: comparison of plasma, serum and tissue VEGF and microvessel density and effects of tamoxifen. Cancer Res. 60:2898–2905. 2000.PubMed/NCBI | |
Kay NE, Bone ND, Tschumper RC, et al: B-CLL cells are capable of synthesis and secretion of both pro- and anti-angiogenic molecules. Leukemia. 16:911–919. 2002. View Article : Google Scholar : PubMed/NCBI | |
Rafii S, Lyden D, Benezra R, Hattori K and Heissig B: Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat Rev Cancer. 2:826–835. 2002. View Article : Google Scholar : PubMed/NCBI | |
Shweiki D, Itin A, Soffer D and Keshet E: Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 359:843–845. 1992. View Article : Google Scholar : PubMed/NCBI | |
Dor Y, Porat R and Keshet E: Vascular endothelial growth factor and vascular adjustments to perturbations in oxygen homeostasis. Am J Physiol Cell Physiol. 280:C1367–C1374. 2001.PubMed/NCBI | |
Kaelin WG Jr: The von Hippel-Lindau tumor suppressor protein and clear cell renal carcinoma. Clin Cancer Res. 13:680s–682s. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cong XL, Li B, Yang RC, Feng SZ, Chen SJ and Han ZC: Enhanced growth suppression of Philadephia1 leukemia cells by targeting bcr3/abl2 and VEGF through antisense strategy. Leukemia. 19:1517–1524. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ghosh AK, Shanafelt TD, Cimmino A, et al: Aberrant regulation of pVHL levels by microRNA promotes the HIF/VEGF axis in CLL B cells. Blood. 113:5568–5574. 2009. View Article : Google Scholar : PubMed/NCBI | |
Withey JM, Marley SB, Kaeda J, Harvey AJ, Crompton MR and Gordon MY: Targeting primary human leukemia cells with RNA interference: Bcr-Abl targeting inhibits myeloid progenitor self-renewal in chronic myeloid leukaemia cells. Br J Haematol. 129:377–380. 2005. View Article : Google Scholar : PubMed/NCBI | |
Schmittgen TD and Livak KJ: Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 3:1101–1108. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ghosh AK, Secreto CR, Knox TR, Ding W, Mukhopadhyay D and Kay NE: Circulating microvesicles in B-cell chronic lymphocytic leukemia can stimulate marrow stromal cells: implications for disease progression. Blood. 115:1755–1764. 2010. View Article : Google Scholar | |
Aggarwal BB, Sethi G, Ahn KS, et al: Targeting signal-transducer-and-activator-of-transcription-3 for prevention and therapy of cancer:modern target but ancient solution. Ann NY Acad Sci. 1091:151–169. 2006. View Article : Google Scholar : PubMed/NCBI | |
Eriksen KW, Kaltoft K, Mikkelsen G, et al: Constitutive STAT3-activation in Sezary syndrome: tyrphostin AG490 inhibits STAT3-activation, interleukin-2 receptor expression and growth of leukemic Sezary cells. Leukemia. 15:787–793. 2001. View Article : Google Scholar | |
Nielsen M, Nissen MH, Gerwien J, et al: Spontaneous interleukin-5 production in cutaneous T-cell lymphoma lines is mediated by constitutively activated Stat3. Blood. 99:973–977. 2002. View Article : Google Scholar : PubMed/NCBI | |
Minet E, Michel G, Mottet D, et al: c-JUN gene induction and AP-1 activity is regulated by a JNK-dependent pathway in hypoxic HepG2 cells. Exp Cell Res. 265:114–124. 2001. View Article : Google Scholar : PubMed/NCBI | |
Pages G, Berra E, Milanini J, Levy AP and Pouyssegur J: Stress-activated protein kinases (JNK and p38/HOG) are essential for vascular endothelial growth factor mRNA stability. J Biol Chem. 275:26484–26491. 2000. View Article : Google Scholar : PubMed/NCBI | |
Krejsgaard T, Vetter-Kauczok CS, Woetmann A, et al: Jak3- and JNK-dependent vascular endothelial growth factor expression in cutaneous T-cell lymphoma. Leukemia. 20:1759–1766. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kumar SA, Hu X, Brown M, et al: Lysophosphatidic acid receptor expression in chronic lymphocytic leukemia leads to cell survival mediated though vascular endothelial growth factor expression. Leuk Lymphoma. 50:2038–2048. 2009. View Article : Google Scholar | |
Hu X, Mendoza FJ, Sun J, Banerji V, Johnston JB and Gibson SB: Lysophosphatidic acid (LPA) induces the expression of VEGF leading to protection against apoptosis in B-cell derived malignancies. Cell Signal. 20:1198–1208. 2008. View Article : Google Scholar : PubMed/NCBI | |
Aguayo A, Kantarjian H, Manshouri T, et al: Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood. 96:2240–2245. 2000.PubMed/NCBI | |
Bellamy WT, Richter L, Sirjani D, et al: Vascular endothelial cell growth factor is an autocrine promoter of abnormal localized immature myeloid precursors and leukemia progenitor formation in myelodysplastic syndromes. Blood. 97:1427–1434. 2001. View Article : Google Scholar | |
Braun T, Carvalho G, Fabre C, Grosjean J, Fenaux P and Kroemer G: Targeting NF-kappaB in hematologic malignancies. Cell Death Differ. 13:748–758. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhao T, Yasunaga J, Satou Y, et al: Human T-cell leukemia virus type 1 bZIP factor selectively suppresses the classical pathway of NF-kappaB. Blood. 113:2755–2764. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sujobert P, Bardet V, Cornillet-Lefebvre P, et al: Essential role for the p110delta isoform in phosphoinositide 3-kinase activation and cell proliferation in acute myeloid leukemia. Blood. 106:1063–1066. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ramos AM, Fernandez C, Amran D, Sancho P, de Blas E and Aller P: Pharmacologic inhibitors of PI3K/Akt potentiate the apoptotic action of the antileukemic drug arsenic trioxide via glutathione depletion and increased peroxide accumulation in myeloid leukemia cells. Blood. 105:4013–4020. 2005. View Article : Google Scholar | |
Shi Q, Le X, Abbruzzese JL, et al: Constitutive Sp1 activity is essential for differential constitutive expression of vascular endothelial growth factor in human pancreatic adenocarcinoma. Cancer Res. 61:4143–4154. 2001. | |
Hsu TC, Young MR, Cmarik J and Colburn NH: Activator protein 1 (AP-1) and nuclear factor kappaB (NF-kappa B)-dependent transcriptional events in carcinogenesis. Free Radic Biol Med. 28:1338–1348. 2000. View Article : Google Scholar : PubMed/NCBI | |
Angel P and Karin M: The role of Jun, Fos and the AP-1 complex in cell proliferation and transformation. Biochim Biophys Acta. 1072:129–157. 1991.PubMed/NCBI | |
Pollmann C, Huang X, Mall J, Bech-Otschir D, Naumann M and Dubiel W: The constitutive photomorphogenesis 9 signalosome directs vascular endothelial growth factor production in tumor cells. Cancer Res. 61:8416–8421. 2001.PubMed/NCBI | |
Poulaki V, Mitsiades CS, McMullan C, et al: Regulation of vascular endothelial growth factor expression by insulin-like growth factor I in thyroid carcinomas. J Clin Endocrinol Metab. 88:5392–5398. 2003. View Article : Google Scholar : PubMed/NCBI | |
Chuang CH, Huang CS and Hu ML: Vitamin E and rutin synergistically inhibit expression of vascular endothelial growth factor through down-regulation of binding activity of activator protein-1 in human promyelocytic leukemia (HL-60) cells. Chem Biol Interact. 183:434–441. 2010. View Article : Google Scholar | |
Rho SB, Choi K, Park K and Lee JH: Inhibition of angiogenesis by the BTB domain of promyelocytic leukemia zinc finger protein. Cancer Lett. 294:49–56. 2010. View Article : Google Scholar : PubMed/NCBI | |
Konopka JB, Watanabe SM and Witte ON: An alteration of the human c-abl protein in K562 leukemia cells unmasks associated tyrosine kinase activity. Cell. 37:1035–1042. 1984. View Article : Google Scholar : PubMed/NCBI | |
Pendergast AM, Quilliam LA, Cripe LD, et al: BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell. 75:175–185. 1993. View Article : Google Scholar : PubMed/NCBI | |
Carlesso N, Frank DA and Griffin JD: Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by Bcr/Abl. J Exp Med. 183:811–820. 1996. View Article : Google Scholar : PubMed/NCBI | |
Sillaber C, Gesbert F, Frank DA, Sattler M and Griffin JD: STAT5 activation contributes to growth and viability in Bcr/Abl-transformed cells. Blood. 95:2118–2125. 2000.PubMed/NCBI | |
Nieborowska-Skorska M, Wasik MA, Slupianek A, Salomoni P, Kitamura T, Calabretta B and Skorski T: Signal transducer and activator of transcription (STAT)5 activation by BCR/ABL is dependent on intact Src homology (SH)3 and SH2 domains of BCR/ABL and is required for leukemogenesis. J Exp Med. 189:1229–1242. 1999. View Article : Google Scholar : PubMed/NCBI | |
Skorski T, Bellacosa A, Nieborowska-Skorska M, Majewski M, Martinez R, Choi JK, et al: Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway. EMBO J. 16:6151–6161. 1997. View Article : Google Scholar : PubMed/NCBI | |
Hwan D, Kim, Xu W, et al: Lipton genetic variants in the candidate genes of the apoptosis pathway and susceptibility to chronic myeloid leukemia. Blood. 113:2517–2525. 2009. View Article : Google Scholar : PubMed/NCBI | |
Li L, Zhang R, Fang ZY, Chen JN and Zhu ZL: Suppression of vascular endothelial growth factor (VEGF) expression by targeting the Bcr-Abl oncogene and protein tyrosine kinase activity in Bcr-Abl-positive leukaemia cells. J Int Med Res. 37:426–437. 2009. View Article : Google Scholar : PubMed/NCBI | |
Böhm A, Aichberger KJ, Mayerhofer M, et al: Targeting of mTOR is associated with decreased growth and decreased VEGF expression in acute myeloid leukaemia cells. Eur J Clin Invest. 39:395–405. 2009.PubMed/NCBI | |
Venables JP: Unbalanced alternative splicing and its significance in cancer. Bioessays. 28:378–386. 2006. View Article : Google Scholar : PubMed/NCBI | |
Podar K, Tai YT and Davies FE: Vascular endothelial growth factor triggers signaling cascades mediating multiple myeloma cell growth and migration. Blood. 98:428–435. 2001. View Article : Google Scholar : PubMed/NCBI | |
Hussong JW, Rodgers GM and Shami PJ: Evidence of increased angiogenesis in patients with acute myeloid leukemia. Blood. 95:390–313. 2000.PubMed/NCBI | |
Padró T, Ruiz S, Bieker R, Bürger H, Steins M, Kienast J, et al: Increased angiogenesis in the bone marrow of patients with acute myeloid leukemia. Blood. 95:2637–2644. 2000. | |
Abrams ST, Lakum T, Lin K, et al: B-cell receptor signaling in chronic lymphocytic leukemia cells is regulated by overexpressed active protein kinase CβII. Blood. 109:1193–1201. 2007.PubMed/NCBI | |
Gora-Tybor J, Blonski JZ and Robak T: Circulating vascular endothelial growth factor (VEGF) and its soluble receptors in patients with chronic lymphocytic leukemia. Eur Cytokine Netw. 16:41–46. 2005.PubMed/NCBI | |
Abrams ST, Brown BR, Zuzel M and Slupsky JR: Vascular endothelial growth factor stimulates protein kinase CβII expression in chronic lymphocytic leukaemia cells. Blood. 115:4447–4454. 2010. | |
Ugarte-Berzal E, Redondo-Muñoz J, Eroles P, et al: VEGF/VEGFR2 interaction down-regulates matrix metalloproteinase-9 via STAT1 activation and inhibits B chronic lymphocytic leukemia cell migration. Blood. 115:846–849. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hata AN and Breyer RM: Pharmacology and signaling of prostaglandin receptors: multiple roles in inflammation and immune modulation. Pharmacol Ther. 103:147–166. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wu G, Luo J, Rana JS, Laham R, Sellke FW and Li J: Involvement of COX-2 in VEGF-induced angiogenesis via P38 and JNK pathways in vascular endothelial cells. Cardiovasc. 69:512–519. 2006. View Article : Google Scholar : PubMed/NCBI | |
Su JL, Shih JY, Yen ML, et al: Cyclooxygenase-2 induces EP1- and HER-2/Neu-dependent vascular endothelial growth factor-C up-regulation: a novel mechanism of lymphangiogenesis in lung adenocarcinoma. Cancer Res. 64:554–564. 2004. View Article : Google Scholar : PubMed/NCBI | |
Véronèse L, Tournilhac O, Verrelle P, et al: Low MCL-1 mRNA expression correlates with prolonged survival in B-cell chronic lymphocytic leukemia. Leukemia. 22:1291–1293. 2008.PubMed/NCBI | |
Pepper C, Lin TT, Pratt G, et al: Mcl-1 expression has in vitro and in vivo significance in chronic lymphocytic leukemia and is associated with other poor prognostic markers. Blood. 112:3807–3817. 2008. View Article : Google Scholar : PubMed/NCBI | |
Véronèse L, Tournilhac O, Verrelle P, et al: Strong correlation between VEGF and MCL-1 mRNA expression levels in B-cell chronic lymphocytic leukemia. Leuk Res. 33:1623–1626. 2009.PubMed/NCBI | |
Perez-Atayde AR, Sallan SE, Tedrow U, Connors S, Allred E and Folkman J: Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia. Am J Pathol. 150:815–821. 1997.PubMed/NCBI | |
Yetgin S, Yenicesu I, Etin MC and Tuncer M: Clinical importance of serum vascular endothelial and basic fibroblast growth factors in children with acute lymphoblastic leukemia. Leuk Lymphoma. 42:83–88. 2001. View Article : Google Scholar : PubMed/NCBI | |
Dong X, Han ZC and Yang R: Angiogenesis and antiangiogenic therapy in hematologic malignancies. Crit Rev Oncol Hematol. 62:105–118. 2007. View Article : Google Scholar : PubMed/NCBI | |
Frater JL, Kay NE, Goolsby CL, Crawford SE, Dewald GW and Peterson LC: Dysregulated angiogenesis in B-chronic lymphocytic leukemia: morphologic, immunohistochemical, and flow cytometric evidence. Diagn Pathol. 3:162008. View Article : Google Scholar | |
Norén-Nyström U, Heyman M, Frisk P, et al: Vascular density in childhood acute lymphoblastic leukaemia correlates to biological factors and outcome. Br J Haematol. 146:521–530. 2009.PubMed/NCBI | |
Chen H, Treweeke AT, West DC, Till KJ, Cawley JC, Zuzel M and Toh CH: In vitro and in vivo production of vascular endothelial growth factor by chronic lymphocytic leukemia cells. Blood. 96:3181–3187. 2000.PubMed/NCBI | |
Folkman J: Fundamental concepts of the angiogenic process. Curr Mol Med. 3:643–651. 2003. View Article : Google Scholar : PubMed/NCBI | |
Verstovsek S, Lunin S, Kantarjian H, et al: Clinical relevance of VEGF receptors 1 and 2 in patients with chronic myelogenous leukemia. Leuk Res. 27:661–669. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hayashibara T, Yamada Y, Miyanishi T, et al: Vascular endothelial growth factor and cellular chemotaxis: a possible autocrine pathway in adult T-cell leukemia cell invasion. Clin Cancer Res. 7:2719–2726. 2001.PubMed/NCBI | |
Demacq C, Vasconcellos VB, Izidoro-Toledo TC, et al: Vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (NOS3) polymorphisms are associated with high relapse risk in childhood acute lymphoblastic leukemia (ALL). Clin Chim Acta. 411:1335–1405. 2010. View Article : Google Scholar : PubMed/NCBI | |
Fragoso R, Elias AP and Dias S: Autocrine VEGF loops, signaling pathways, and acute leukemia regulation. Leuk Lymphoma. 48:481–488. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bellamy WT: Expression of vascular endothelial growth factor and its receptors in multiple myeloma and other hematopoietic malignancies. Semin Oncol. 28:551–559. 2001. View Article : Google Scholar : PubMed/NCBI | |
Bairey O, Boycov O, Kaganovsky E, Zimra Y, Shaklai M and Rabizadeh E: All three receptors for vascular endothelial growth factor (VEGF) are expressed on B-chronic lymphocytic leukemia (CLL) cells. Leuk Res. 28:243–248. 2004. View Article : Google Scholar : PubMed/NCBI | |
de Bont ES, Neefjes VM, Rosati S, Vellenga E and Kamps WA: New vessel formation and aberrant VEGF/VEGFR signaling in acute leukemia: does it matter? Leuk Lymphoma. 43:1901–1909. 2002.PubMed/NCBI | |
Aguayo A, Estey E, Kantarjian H, et al: Cellular vascular endothelial growth factor is a predictor of outcome in patients with acute myeloid leukemia. Blood. 94:3717–3721. 1999.PubMed/NCBI | |
Fu J, Fu J, Chen X, Zhang Y, Gu H and Bai Y: CD147 and VEGF co-expression predicts prognosis in patients with acute myeloid leukemia. Jpn J Clin Oncol. 40:1046–1052. 2010. View Article : Google Scholar : PubMed/NCBI | |
Fiedler W, Graeven U, Ergün S, et al: Vascular endothelial growth factor, a possible paracrine growth factor in human acute myeloid leukemia. Blood. 89:1870–1875. 1997.PubMed/NCBI | |
Koistinen P, Siitonen T, Mäntymaa P, et al: Regulation of the acute myeloid leukemia cell line OCI/AML-2 by endothelial nitric oxide synthase under the control of a vascular endothelial growth factor signaling system. Leukemia. 15:1433–1441. 2001. View Article : Google Scholar | |
Fielder W, Graeven U, Ergün S, et al: Expression of FLT4 and its ligand VEGF-C in acute myeloid leukemia. Leukemia. 11:1234–1237. 1997. View Article : Google Scholar : PubMed/NCBI | |
de Jonge HJ, Valk PJ, Veeger NJ, et al: High VEGFC expression is associated with unique gene expression profiles and predicts adverse prognosis in pediatric and adult acute myeloid leukemia. Blood. 116:1747–1754. 2010.PubMed/NCBI | |
Molica S, Vitelli G, Levato D, Gandolfo GM and Liso V: Increased serum levels of vascular endothelial growth factor predict risk of progression in early B-cell chronic lymphocytic leukaemia. Br J Haematol. 107:605–610. 1999. View Article : Google Scholar : PubMed/NCBI | |
Ferrajoli A, Manshouri T, Estrov Z, et al: High levels of vascular endothelial growth factor receptor-2 correlate with shortened survival in chronic lymphocytic leukemia. Clin Cancer Res. 7:795–799. 2001.PubMed/NCBI | |
Dias S, Hattori K, Zhu Z, et al: Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration. J Clin Invest. 106:511–521. 2000. View Article : Google Scholar : PubMed/NCBI | |
Dias S, Hattori K, Heissig B, et al: Inhibition of both paracrine and autocrine VEGF/VEGFR-2 signaling pathways is essential to induce long-term remission of xenotransplanted human leukemias. Proc Natl Acad Sci USA. 98:10857–10862. 2001. View Article : Google Scholar : PubMed/NCBI | |
Schuch G, Machluf M, Bartsch G Jr, et al: In vivo administration of vascular endothelial growth factor (VEGF) and its antagonist, soluble neuropilin-1, predicts a role of VEGF in the progression of acute myeloid leukemia in vivo. Blood. 100:4622–4628. 2002. View Article : Google Scholar : PubMed/NCBI | |
Liu P, Wang Y, Li YH, et al: Adenovirus-mediated gene therapy with an antiangiogenic fragment of thrombospondin-1 inhibits human leukemia xenograft growth in nude mice. Leuk Res. 27:701–708. 2003. View Article : Google Scholar : PubMed/NCBI | |
Vecchiarelli-Federico LM, Cervi D, Haeri M, Li Y, Nagy A and Ben-David Y: Vascular endothelial growth factor - a positive and negative regulator of tumor growth. Cancer Res. 70:863–867. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cervi D, Shaked Y, Haeri M, et al: Enhanced natural-killer cell and erythropoietic activities in VEGF-A-overexpressing mice delay F-MuLV-induced erythroleukemia. Blood. 109:2139–2146. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG and Kerbel RS: Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell. 15:232–239. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hurwitz H, Fehrenbacher L, Novotny W, et al: Bevacizumab plus irinotecan, fluorouracil and leucovorin for metastatic colorectal cancer. N Engl J Med. 350:2335–2342. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sandler A, Gray R, Perry MC, et al: Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med. 355:2542–2550. 2006. View Article : Google Scholar : PubMed/NCBI | |
Miller K, Wang M, Gralow J, et al: Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med. 357:2666–2676. 2007. View Article : Google Scholar : PubMed/NCBI | |
Escudier B, Eisen T, Stadler WM, et al: Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med. 356:125–134. 2007. View Article : Google Scholar : PubMed/NCBI | |
Motzer RJ, Hutson TE, Tomczak P, et al: Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med. 356:115–124. 2007. View Article : Google Scholar : PubMed/NCBI | |
Karp JE, Gojo I, Pili R, et al: Targeting vascular endothelial growth factor for relapsed and refractory adult acute myelogenous leukemias: therapy with sequential 1-β-d-arabinofuranosylcytosine, mitoxantrone, and bevacizumab. Clin Cancer Res. 10:3577–3585. 2004.PubMed/NCBI | |
Presta LG, Chen H, O’Connor SJ, et al: Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res. 57:4593–4599. 1997.PubMed/NCBI | |
D’Amato RJ, Loughnan MS, Flynn E and Folkman J: Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA. 91:4082–4085. 1994. | |
Teo SK: Properties of thalidomide and its analogues: implications for anticancer therapy. AAPS J. 7:E14–E19. 2005. View Article : Google Scholar : PubMed/NCBI | |
Dredge K, Marriott JB, Macdonald CD, et al: Novel thalidomide analogues display anti-angiogenic activity independently of immunomodulatory effects. Br J Cancer. 87:1166–1172. 2002. View Article : Google Scholar : PubMed/NCBI | |
Thomas DA, Estey E, Giles FJ, et al: Single agent thalidomide in patients with relapsed or refractory acute myeloid leukaemia. Br J Haematol. 123:436–441. 2003. View Article : Google Scholar : PubMed/NCBI | |
Steins MB, Padró T, Bieker R, et al: Efficacy and safety of thalidomide in patients with acute myeloid leukemia. Blood. 99:834–839. 2002. View Article : Google Scholar : PubMed/NCBI | |
Barr P, Fu P, Lazarus H, et al: Antiangiogenic activity of thalidomide in combination with fludarabine, carboplatin and topotecan for high-risk acute myelogenous leukemia. Leuk Lymphoma. 48:1940–1949. 2007. View Article : Google Scholar : PubMed/NCBI | |
Drevs J, Müller-Driver R, Wittig C, et al: PTK787/ZK 222584, a specific vascular endothelial growth factor-receptor tyrosine kinase inhibitor, affects the anatomy of the tumor vascular bed and the functional vascular properties as detected by dynamic enhanced magnetic resonance imaging. Cancer Res. 62:4015–4022. 2002. | |
Roboz GJ, Giles FJ, List AF, et al: Phase 1 study of PTK787/ZK 222584, a small molecule tyrosine kinase receptor inhibitor, for the treatment of acute myeloid leukemia and myelodysplastic syndrome. Leukemia. 20:952–957. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wedge SR, Kendrew J, Hennequin LF, et al: AZD2171: a highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Cancer Res. 65:4389–4400. 2005. View Article : Google Scholar : PubMed/NCBI | |
Fiedler W, Mesters R, Heuser M, et al: An open-label, phase I study of cediranib (RECENTIN) in patients with acute myeloid leukemia. Leuk Res. 34:196–202. 2010. View Article : Google Scholar : PubMed/NCBI | |
Raza A, Mehdi M, Mumtaz M, Ali F, Lascher S and Galili N: Combination of 5-azacytidine and thalidomide for the treatment of myelodysplastic syndromes and acute myeloid leukemia. Cancer. 113:1596–1604. 2008. View Article : Google Scholar : PubMed/NCBI |