1
|
Rosenberg S, Yang J and Restifo N: Cancer
immunotherapy: moving beyond current vaccines. Nat Med. 10:909–915.
2004. View
Article : Google Scholar : PubMed/NCBI
|
2
|
Finn OJ: Cancer immunology. N Engl J Med.
358:2704–2715. 2008. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kantoff PW, Higano CS, Shore ND, et al:
Sipuleucel-T immunotherapy for castration-resistant prostate
cancer. N Engl J Med. 363:411–422. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Palucka K, Ueno H and Banchereau J: Recent
developments in cancer vaccines. J Immunol. 186:1325–1331. 2011.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Copier J, Dalgleish AG, Britten CM, et al:
Improving the efficacy of cancer immunotherapy. Eur J Cancer.
45:1424–1431. 2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Zou W: Regulatory T cells, tumour immunity
and immunotherapy. Nat Rev Immunol. 6:295–307. 2006. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kalinski P: Regulation of immune responses
by prostaglandin E2. J Immunol. 188:21–28. 2012.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Matsuoka T and Narumiya S: The roles of
prostanoids in infection and sickness behaviors. J Infect
Chemother. 14:270–278. 2008. View Article : Google Scholar : PubMed/NCBI
|
9
|
Sheng KC, Wright MD and Apostolopoulos V:
Inflammatory mediators hold the key to dendritic cell suppression
and tumor progression. Curr Med Chem. 18:5507–5518. 2011.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Sombroek CC, Stam AG, Masterson AJ, et al:
Prostanoids play a major role in the primary tumor-induced
inhibition of dendritic cell differentiation. J Immunol.
168:4333–4343. 2002. View Article : Google Scholar : PubMed/NCBI
|
11
|
Kolenko V, Rayman P, Roy B, et al:
Downregulation of JAK3 protein levels in T lymphocytes by
prostaglandin E2 and other cyclic adenosine monophosphate-elevating
agents: impact on interleukin-2 receptor signaling pathway. Blood.
93:2308–2318. 1999.
|
12
|
Walker W and Rotondo D: Prostaglandin
E2 is a potent regulator of interleukin-12- and
interleukin-18-induced natural killer cell interferon-γ synthesis.
Immunology. 111:298–305. 2004.
|
13
|
Obermajer N, Muthuswamy R, Lesnock J, et
al: Positive feedback between PGE2 and COX2 redirects
the differentiation of human dendritic cells toward stable
myeloid-derived suppressor cells. Blood. 118:5498–5505.
2011.PubMed/NCBI
|
14
|
Krishnamoorthy S and Honn KV: Eicosanoids
in tumor progression and metastasis. Subcell Biochem. 49:145–168.
2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Haas AR, Sun J, Vachani A, et al:
Cyclooxygenase-2 inhibition augments the efficacy of a cancer
vaccine. Clin Cancer Res. 12:214–222. 2006. View Article : Google Scholar : PubMed/NCBI
|
16
|
Luft T, Jefford M, Luetjens P, et al:
Functionally distinct dendritic cell (DC) populations induced by
physiologic stimuli: prostaglandin E(2) regulates the migratory
capacity of specific DC subsets. Blood. 100:1362–1372. 2002.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Scandella E, Men Y, Gillessen S, et al:
Prostaglandin E2 is a key factor for CCR7 surface
expression and migration of monocyte-derived dendritic cells.
Blood. 100:1354–1361. 2002.
|
18
|
Braun D, Longman RS and Albert ML: A
two-step induction of indoleamine 2,3 dioxygenase (IDO) activity
during dendritic-cell maturation. Blood. 106:2375–2381. 2005.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Von Bergwelt-Baildon MS, Popov A, Saric T,
et al: CD25 and indoleamine 2,3-dioxygenase are up-regulated by
prostaglandin E2 and expressed by tumor-associated
dendritic cells in vivo: additional mechanisms of T-cell
inhibition. Blood. 108:228–237. 2006.PubMed/NCBI
|
20
|
Muthuswamy R, Mueller-Berghaus J,
Haberkorn U, et al: PGE(2) transiently enhances DC expression of
CCR7 but inhibits the ability of DCs to produce CCL19 and attract
naive T cells. Blood. 116:1454–1459. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Martin F and Chan AC: B cell immunobiology
in disease: evolving concepts from the clinic. Annu Rev Immunol.
24:467–496. 2006. View Article : Google Scholar : PubMed/NCBI
|
22
|
Shimabukuro-Vornhagen A, Hallek MJ, Storb
RF, et al: The role of B cells in the pathogenesis of
graft-versus-host disease. Blood. 114:4919–4927. 2009. View Article : Google Scholar : PubMed/NCBI
|
23
|
Mason NJ, Coughlin CM, Overley B, et al:
RNA-loaded CD40-activated B cells stimulate antigen-specific T-cell
responses in dogs with spontaneous lymphoma. Gene Ther. 15:955–965.
2008. View Article : Google Scholar : PubMed/NCBI
|
24
|
Sorenmo KU, Krick E, Coughlin CM, et al:
CD40-activated B cell cancer vaccine improves second clinical
remission and survival in privately owned dogs with non-Hodgkin’s
lymphoma. PLoS One. 6:e241672011.PubMed/NCBI
|
25
|
Von Bergwelt-Baildon M,
Shimabukuro-Vornhagen A, Popov A, et al: CD40-activated B cells
express full lymph node homing triad and induce T-cell chemotaxis:
potential as cellular adjuvants. Blood. 107:2786–2789.
2006.PubMed/NCBI
|
26
|
Wiesner M, Zentz C, Mayr C, et al:
Conditional immortalization of human B cells by CD40 ligation. PLoS
One. 3:e14642008. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kondo E, Gryschok L, Klein-Gonzalez N, et
al: CD40-activated B cells can be generated in high number and
purity in cancer patients: analysis of immunogenicity and homing
potential. Clin Exp Immunol. 155:249–256. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Liebig TM, Fiedler A, Zoghi S, et al:
Generation of human CD40-activated B cells. J Vis Exp. pii.
13732009.PubMed/NCBI
|
29
|
Popov A, Driesen J, Abdullah Z, et al:
Infection of myeloid dendritic cells with Listeria
monocytogenes leads to the suppression of T cell function by
multiple inhibitory mechanisms. J Immunol. 181:4976–4988.
2008.PubMed/NCBI
|
30
|
Chemnitz JM, Driesen J, Classen S, et al:
Prostaglandin E2 impairs CD4+ T cell
activation by inhibition of lck: implications in Hodgkin’s
lymphoma. Cancer Res. 66:1114–1122. 2006.
|
31
|
Bekeredjian-Ding I, Schafer M, Hartmann E,
et al: Tumour-derived prostaglandin E2 and transforming
growth factor-β synergize to inhibit plasmacytoid dendritic
cell-derived interferon-α. Immunology. 128:439–450. 2009.
|
32
|
Herfs M, Herman L, Hubert P, et al: High
expression of PGE2 enzymatic pathways in cervical (pre)neoplastic
lesions and functional consequences for antigen-presenting cells.
Cancer Immunol Immunother. 58:603–614. 2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Muthuswamy R, Urban J, Lee JJ, et al:
Ability of mature dendritic cells to interact with regulatory T
cells is imprinted during maturation. Cancer Res. 68:5972–5978.
2008. View Article : Google Scholar : PubMed/NCBI
|
34
|
Krause P, Singer E, Darley PI, et al:
Prostaglandin E2 is a key factor for monocyte-derived
dendritic cell maturation: enhanced T cell stimulatory capacity
despite IDO. J Leukoc Biol. 82:1106–1114. 2007.
|
35
|
Wobser M, Voigt H, Houben R, et al:
Dendritic cell based antitumor vaccination: impact of functional
indoleamine 2,3-dioxygenase expression. Cancer Immunol Immunother.
56:1017–1024. 2007. View Article : Google Scholar : PubMed/NCBI
|
36
|
Forster R, Schubel A, Breitfeld D, et al:
CCR7 coordinates the primary immune response by establishing
functional microenvironments in secondary lymphoid organs. Cell.
99:23–33. 1999. View Article : Google Scholar : PubMed/NCBI
|
37
|
Ohl L, Mohaupt M, Czeloth N, et al: CCR7
governs skin dendritic cell migration under inflammatory and
steady-state conditions. Immunity. 21:279–288. 2004. View Article : Google Scholar : PubMed/NCBI
|
38
|
Kabashima K, Shiraishi N, Sugita K, et al:
CXCL12-CXCR4 engagement is required for migration of cutaneous
dendritic cells. Am J Pathol. 171:1249–1257. 2007. View Article : Google Scholar : PubMed/NCBI
|
39
|
Schultze JL, Grabbe S and von
Bergwelt-Baildon MS: DCs and CD40-activated B cells: current and
future avenues to cellular cancer immunotherapy. Trends Immunol.
25:659–664. 2004. View Article : Google Scholar : PubMed/NCBI
|
40
|
Kim SK, Nguyen Pham TN, Nguyen Hoang TM,
et al: Induction of myeloma-specific cytotoxic T lymphocytes ex
vivo by CD40-activated B cells loaded with myeloma tumor antigens.
Ann Hematol. 88:1113–1123. 2009. View Article : Google Scholar : PubMed/NCBI
|
41
|
Harizi H, Grosset C and Gualde N:
Prostaglandin E2 modulates dendritic cell function via
EP2 and EP4 receptor subtypes. J Leukoc Biol.
73:756–763. 2003.
|
42
|
Legler DF, Krause P, Scandella E, et al:
Prostaglandin E2 is generally required for human
dendritic cell migration and exerts its effect via EP2 and EP4
receptors. J Immunol. 176:966–973. 2006.PubMed/NCBI
|
43
|
Fedyk ER and Phipps RP: Prostaglandin
E2 receptors of the EP2 and EP4
subtypes regulate activation and differentiation of mouse B
lymphocytes to IgE-secreting cells. Proc Natl Acad Sci USA.
93:10978–10983. 1996.PubMed/NCBI
|
44
|
Lee H, Trott JS, Haque S, et al: A
cyclooxygenase-2/prostaglandin E2 pathway augments
activation-induced cytosine deaminase expression within replicating
human B cells. J Immunol. 185:5300–5314. 2010.PubMed/NCBI
|