1
|
Aune D, Vieira AR, Chan DS, et al: Height
and pancreatic cancer risk: a systematic review and meta-analysis
of cohort studies. Cancer Causes Control. 23:1213–1222. 2012.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Li D, Xie K, Wolff R and Abbruzzese JL:
Pancreatic cancer. Lancet. 363:1049–1057. 2004. View Article : Google Scholar
|
3
|
Hochster HS, Haller DG, de Gramont A, et
al: Consensus report of the international society of
gastrointestinal oncology on therapeutic progress in advanced
pancreatic cancer. Cancer. 107:676–685. 2006. View Article : Google Scholar : PubMed/NCBI
|
4
|
Mikkers H, Allen J, Knipscheer P, et al:
High-throughput retroviral tagging to identify components of
specific signaling pathways in cancer. Nat Genet. 32:153–159. 2002.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Qian KC, Wang L, Hickey ER, et al:
Structural basis of constitutive activity and a unique nucleotide
binding mode of human Pim-1 kinase. J Biol Chem. 280:6130–6137.
2005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kumar A, Mandiyan V, Suzuki Y, et al:
Crystal structures of proto-oncogene kinase Pim1: a target of
aberrant somatic hypermutations in diffuse large cell lymphoma. J
Mol Biol. 348:183–193. 2005. View Article : Google Scholar : PubMed/NCBI
|
7
|
Holder S, Zemskova M, Zhang C, et al:
Characterization of a potent and selective small-molecule inhibitor
of the PIM1 kinase. Mol Cancer Ther. 6:163–172. 2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Alvarado Y, Giles FJ and Swords RT: The
PIM kinases in hematological cancers. Expert Rev Hematol. 5:81–96.
2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kim KT, Baird K, Ahn JY, et al: Pim-1 is
up-regulated by constitutively activated FLT3 and plays a role in
FLT3-mediated cell survival. Blood. 105:1759–1767. 2005. View Article : Google Scholar : PubMed/NCBI
|
10
|
Pasqualucci L, Neumeister P, Goossens T,
et al: Hypermutation of multiple proto-oncogenes in B-cell diffuse
large-cell lymphomas. Nature. 412:341–346. 2001. View Article : Google Scholar : PubMed/NCBI
|
11
|
Gaidano G, Pasqualucci L, Capello D, et
al: Aberrant somatic hypermutation in multiple subtypes of
AIDS-associated non-Hodgkin lymphoma. Blood. 102:1833–1841. 2003.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Dhanasekaran SM, Barrette TR, Ghosh D, et
al: Delineation of prognostic biomarkers in prostate cancer.
Nature. 412:822–826. 2001. View
Article : Google Scholar : PubMed/NCBI
|
13
|
Valdman A, Fang X, Pang ST, Ekman P and
Egevad L: Pim-1 expression in prostatic intraepithelial neoplasia
and human prostate cancer. Prostate. 60:367–371. 2004. View Article : Google Scholar : PubMed/NCBI
|
14
|
Xu Y, Zhang T, Tang H, et al:
Overexpression of PIM-1 is a potential biomarker in prostate
carcinoma. J Surg Oncol. 92:326–330. 2005. View Article : Google Scholar : PubMed/NCBI
|
15
|
Liu LM, Zhang JX, Wang XP, Guo HX, Deng H
and Luo J: Pim-3 protects against hepatic failure in
D-galactosamine (D-GalN)-sensitized rats. Eur J Clin Invest.
40:127–138. 2010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Li YY, Popivanova BK, Nagai Y, Ishikura H,
Fujii C and Mukaida N: Pim-3, a proto-oncogene with
serine/threonine kinase activity, is aberrantly expressed in human
pancreatic cancer and phosphorylates Bad to block Bad-mediated
apoptosis in human pancreatic cancer cell lines. Cancer Res.
66:6741–6747. 2006. View Article : Google Scholar
|
17
|
Popivanova BK, Li YY, Zheng H, et al:
Proto-oncogene, Pim-3 with serine/threonine kinase activity, is
aberrantly expressed in human colon cancer cells and can prevent
Bad-mediated apoptosis. Cancer Sci. 98:321–328. 2007. View Article : Google Scholar : PubMed/NCBI
|
18
|
Lilly M, Sandholm J, Cooper JJ, Koskinen
PJ and Kraft A: The PIM-1 serine kinase prolongs survival and
inhibits apoptosis-related mitochondrial dysfunction in part
through a bcl-2-dependent pathway. Oncogene. 18:4022–4031. 1999.
View Article : Google Scholar
|
19
|
Fox CJ, Hammerman PS, Cinalli RM, Master
SR, Chodosh LA and Thompson CB: The serine/threonine kinase Pim-2
is a transcriptionally regulated apoptotic inhibitor. Genes Dev.
17:1841–1854. 2003. View Article : Google Scholar : PubMed/NCBI
|
20
|
Yan B, Zemskova M, Holder S, et al: The
PIM-2 kinase phosphorylates BAD on serine 112 and reverses
BAD-induced cell death. J Biol Chem. 278:45358–45367. 2003.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Macdonald A, Campbell DG, Toth R,
McLauchlan H, Hastie CJ and Arthur JS: Pim kinases phosphorylate
multiple sites on Bad and promote 14-3-3 binding and dissociation
from Bcl-XL. BMC Cell Biol. 7:12006. View Article : Google Scholar : PubMed/NCBI
|
22
|
Brault L, Gasser C, Bracher F, Huber K,
Knapp S and Schwaller J: PIM serine/threonine kinases in the
pathogenesis and therapy of hematologic malignancies and solid
cancers. Haematologica. 95:1004–1015. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Anizon F, Shtil AA, Danilenko VN and
Moreau P: Fighting tumor cell survival: advances in the design and
evaluation of Pim inhibitors. Curr Med Chem. 17:4114–4133. 2010.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Akue-Gedu R, Rossignol E, Azzaro S, et al:
Synthesis, kinase inhibitory potencies, and in vitro
antiproliferative evaluation of new Pim kinase inhibitors. J Med
Chem. 52:6369–6381. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Tao ZF, Hasvold LA, Leverson JD, et al:
Discovery of 3H-benzo[4,5]thieno[3,2-d]pyrimidin-4-ones as potent,
highly selective, and orally bioavailable inhibitors of the human
protooncogene proviral insertion site in moloney murine leukemia
virus (PIM) kinases. J Med Chem. 52:6621–6636. 2009.
|
26
|
Chen LS, Redkar S, Bearss D, Wierda WG and
Gandhi V: Pim kinase inhibitor, SGI-1776, induces apoptosis in
chronic lymphocytic leukemia cells. Blood. 114:4150–4157. 2009.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Mumenthaler SM, Ng PY, Hodge A, et al:
Pharmacologic inhibition of Pim kinases alters prostate cancer cell
growth and resensitizes chemoresistant cells to taxanes. Mol Cancer
Ther. 8:2882–2893. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Yano T, Ishikura H, Kato H, Ogawa Y, Kondo
S and Yoshiki T: Vaccination effect of interleukin-6-producing
pancreatic cancer cells in nude mice: a model of tumor prevention
and treatment in immune-compromised patients. Jpn J Cancer Res.
92:83–87. 2001. View Article : Google Scholar : PubMed/NCBI
|
29
|
Lieber M, Mazzetta J, Nelson-Rees W,
Kaplan M and Todaro G: Establishment of a continuous tumor-cell
line (panc-1) from a human carcinoma of the exocrine pancreas. Int
J Cancer. 15:741–747. 1975. View Article : Google Scholar : PubMed/NCBI
|
30
|
Yunis AA, Arimura GK and Russin DJ: Human
pancreatic carcinoma (MIA PaCa-2) in continuous culture:
sensitivity to asparaginase. Int J Cancer. 19:128–135. 1977.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Leibovitz A, Stinson JC, McCombs WB III,
McCoy CE, Mazur KC and Mabry ND: Classification of human colorectal
adenocarcinoma cell lines. Cancer Res. 36:4562–4569.
1976.PubMed/NCBI
|
32
|
Bruns CJ, Harbison MT, Kuniyasu H, Eue I
and Fidler IJ: In vivo selection and characterization of
metastatic variants from human pancreatic adenocarcinoma by using
orthotopic implantation in nude mice. Neoplasia. 1:50–62. 1999.
View Article : Google Scholar
|
33
|
Marshall CJ, Franks LM and Carbonell AW:
Markers of neoplastic transformation in epithelial cell lines
derived from human carcinomas. J Natl Cancer Inst. 58:1743–1751.
1977.PubMed/NCBI
|
34
|
Brattain MG, Brattain DE, Fine WD, et al:
Initiation and characterization of cultures of human colonic
carcinoma with different biological characteristics utilizing
feeder layers of confluent fibroblasts. Oncodev Biol Med.
2:355–366. 1981.
|
35
|
Knowles BB, Howe CC and Aden DP: Human
hepatocellular carcinoma cell lines secrete the major plasma
proteins and hepatitis B surface antigen. Science. 209:497–499.
1980. View Article : Google Scholar : PubMed/NCBI
|
36
|
Nakabayashi H, Taketa K, Miyano K, Yamane
T and Sato J: Growth of human hepatoma cells lines with
differentiated functions in chemically defined medium. Cancer Res.
42:3858–3863. 1982.PubMed/NCBI
|
37
|
Taniguchi T, Tanabe G, Muraoka O and
Ishibashi H: Total synthesis of (+/-)-stemonamide and
(+/-)-isostemonamide using a radical cascade. Org Lett. 10:197–199.
2008.
|
38
|
Li YY, Wang YY, Taniguchi T, et al:
Identification of stemonamide synthetic intermediates as a novel
potent anticancer drug with an apoptosis-inducing ability. Int J
Cancer. 127:474–484. 2010.PubMed/NCBI
|
39
|
Wang YY, Taniguchi T, Baba T, Li YY,
Ishibashi H and Mukaida N: Identification of a phenanthrene
derivative as a potent anticancer drug with Pim kinase inhibitory
activity. Cancer Sci. 103:107–115. 2011. View Article : Google Scholar : PubMed/NCBI
|
40
|
Amaravadi R and Thompson CB: The survival
kinases Akt and Pim as potential pharmacological targets. J Clin
Invest. 115:2618–2624. 2005. View Article : Google Scholar : PubMed/NCBI
|
41
|
Rhodes N, Heerding DA, Duckett DR, et al:
Characterization of an Akt kinase inhibitor with potent
pharmacodynamic and antitumor activity. Cancer Res. 68:2366–2374.
2008. View Article : Google Scholar : PubMed/NCBI
|
42
|
André T, Balosso J, Louvet C, et al:
Adenocarcinoma of the pancreas. General characteristics. Presse
Med. 27:533–536. 1998.(In French).
|
43
|
Jian J, Hu ZF and Huang Y: Effect of
ginsenoside Rg3 on Pim-3 and Bad proteins in human pancreatic
cancer cell line PANC-1. Ai Zheng. 28:461–465. 2009.(In
Chinese).
|
44
|
Fujii C, Nakamoto Y, Lu P, et al: Aberrant
expression of serine/threonine kinase Pim-3 in hepatocellular
carcinoma development and its role in the proliferation of human
hepatoma cell lines. Int J Cancer. 114:209–218. 2005. View Article : Google Scholar : PubMed/NCBI
|
45
|
Zheng HC, Tsuneyama K, Takahashi H, et al:
Aberrant Pim-3 expression is involved in gastric
adenoma-adenocarcinoma sequence and cancer progression. J Cancer
Res Clin Oncol. 134:481–488. 2008. View Article : Google Scholar : PubMed/NCBI
|
46
|
Bullock AN, Debreczeni J, Amos AL, Knapp S
and Turk BE: Structure and substrate specificity of the Pim-1
kinase. J Biol Chem. 280:41675–41682. 2005. View Article : Google Scholar : PubMed/NCBI
|
47
|
Bullock AN, Russo S, Amos A, et al:
Crystal structure of the PIM2 kinase in complex with an
organoruthenium inhibitor. PLoS One. 4:e71122009. View Article : Google Scholar : PubMed/NCBI
|
48
|
Swords R, Kelly K, Carew J, et al: The Pim
kinases: new targets for drug development. Curr Drug Targets.
12:2059–2066. 2011. View Article : Google Scholar : PubMed/NCBI
|
49
|
Pogacic V, Bullock AN, Fedorov O, et al:
Structural analysis identifies imidazo[1,2-b]pyridazines as PIM
kinase inhibitors with in vitro antileukemic activity.
Cancer Res. 67:6916–6924. 2007.PubMed/NCBI
|
50
|
Dakin LA, Block MH, Chen H, et al:
Discovery of novel benzylidene-1,3-thiazolidine-2,4-diones as
potent and selective inhibitors of the PIM-1, PIM-2, and PIM-3
protein kinases. Bioorg Med Chem Lett. 22:4599–4604. 2012.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Xia Z, Knaak C, Ma J, et al: Synthesis and
evaluation of novel inhibitors of Pim-1 and Pim-2 protein kinases.
J Med Chem. 52:74–86. 2009. View Article : Google Scholar : PubMed/NCBI
|
52
|
Lin YW, Beharry ZM, Hill EG, et al: A
small molecule inhibitor of Pim protein kinases blocks the growth
of precursor T-cell lymphoblastic leukemia/lymphoma. Blood.
115:824–833. 2010. View Article : Google Scholar : PubMed/NCBI
|
53
|
Nishiguchi GA, Atallah G, Bellamacina C,
et al: Discovery of novel 3,5-disubstituted indole derivatives as
potent inhibitors of Pim-1, Pim-2, and Pim-3 protein kinases.
Bioorg Med Chem Lett. 21:6366–6369. 2011. View Article : Google Scholar : PubMed/NCBI
|
54
|
Gavara L, Saugues E, Alves G, Debiton E,
Anizon F and Moreau P: Synthesis and biological activities of
pyrazolo[3,4-g]quinoxaline derivatives. Eur J Med Chem.
45:5520–5526. 2010.
|
55
|
Akue-Gedu R, Letribot B, Saugues E,
Debiton E, Anizon F and Moreau P: Kinase inhibitory potencies and
in vitro antiproliferative activities of N-10 substituted
pyrrolo[2,3-a]carbazole derivatives. Bioorg Med Chem Lett.
22:3807–3809. 2012.PubMed/NCBI
|
56
|
Akue-Gedu R, Nauton L, Thery V, et al:
Synthesis, Pim kinase inhibitory potencies and in vitro
antiproliferative activities of diversely substituted
pyrrolo[2,3-a]carbazoles. Bioorg Med Chem. 18:6865–6873.
2010.PubMed/NCBI
|
57
|
Letribot B, Akue-Gedu R, Santio NM, et al:
Use of copper(I) catalyzed azide alkyne cycloaddition (CuAAC) for
the preparation of conjugated pyrrolo[2,3-a]carbazole Pim kinase
inhibitors. Eur J Med Chem. 50:304–310. 2012.PubMed/NCBI
|
58
|
Chen WS, Xu PZ, Gottlob K, et al: Growth
retardation and increased apoptosis in mice with homozygous
disruption of the Akt1 gene. Genes Dev. 15:2203–2208. 2001.
View Article : Google Scholar : PubMed/NCBI
|
59
|
Easton RM, Cho H, Roovers K, et al: Role
for Akt3/protein kinase Bgamma in attainment of normal brain size.
Mol Cell Biol. 25:1869–1878. 2005. View Article : Google Scholar : PubMed/NCBI
|
60
|
Woulfe D, Jiang H, Morgans A, Monks R,
Birnbaum M and Brass LF: Defects in secretion, aggregation, and
thrombus formation in platelets from mice lacking Akt2. J Clin
Invest. 113:441–450. 2004. View Article : Google Scholar : PubMed/NCBI
|
61
|
Mukaida N, Wang YY and Li YY: Roles of
Pim-3, a novel survival kinase, in tumorigenesis. Cancer Sci.
102:1437–1442. 2011. View Article : Google Scholar : PubMed/NCBI
|