1
|
Leenhardt L, Grosclaude P and
Cherie-Challine L: Increased incidence of thyroid carcinoma in
France: a true epidemic or thyroid nodule management effects?
Report from the French Thyroid Cancer Committee. Thyroid.
14:1056–1060. 2004. View Article : Google Scholar : PubMed/NCBI
|
2
|
Davies L and Welch HG: Increasing
incidence of thyroid cancer in the United States, 1973–2002. JAMA.
295:2164–2167. 2006.
|
3
|
Prasad NB, Somervell H, Tufano RP, et al:
Identification of genes differentially expressed in benign versus
malignant thyroid tumors. Clin Cancer Res. 14:3327–3337. 2008.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Chen AY, Jemal A and Ward EM: Increasing
incidence of differentiated thyroid cancer in the United States,
1988–2005. Cancer. 115:3801–3807. 2009.
|
5
|
Vriens MR, Suh I, Moses W and Kebebew E:
Clinical features and genetic predisposition to hereditary
nonmedullary thyroid cancer. Thyroid. 19:1343–1349. 2009.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Calin GA and Croce CM: MicroRNA-cancer
connection: the beginning of a new tale. Cancer Res. 66:7390–7394.
2006. View Article : Google Scholar : PubMed/NCBI
|
7
|
Michael MZ, O’Connor SM, van Holst
Pellekaan NG, Young GP and James RJ: Reduced accumulation of
specific microRNAs in colorectal neoplasia. Mol Cancer Res.
1:882–891. 2003.PubMed/NCBI
|
8
|
Calin GA, Ferracin M, Cimmino A, et al: A
MicroRNA signature associated with prognosis and progression in
chronic lymphocytic leukemia. N Engl J Med. 353:1793–1801. 2005.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Eis PS, Tam W, Sun L, et al: Accumulation
of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad
Sci USA. 102:3627–3632. 2005. View Article : Google Scholar : PubMed/NCBI
|
10
|
Takamizawa J, Konishi H, Yanagisawa K, et
al: Reduced expression of the let-7 microRNAs in human lung cancers
in association with shortened postoperative survival. Cancer Res.
64:3753–3756. 2004. View Article : Google Scholar : PubMed/NCBI
|
11
|
Iorio MV, Ferracin M, Liu CG, et al:
MicroRNA gene expression deregulation in human breast cancer.
Cancer Res. 65:7065–7070. 2005. View Article : Google Scholar : PubMed/NCBI
|
12
|
Ciafrè SA, Galardi S, Mangiola A, et al:
Extensive modulation of a set of microRNAs in primary glioblastoma.
Biochem Biophys Res Commun. 334:1351–1358. 2005.PubMed/NCBI
|
13
|
Chan JA, Krichevsky AM and Kosik KS:
MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells.
Cancer Res. 65:6029–6033. 2005. View Article : Google Scholar : PubMed/NCBI
|
14
|
He H, Jazdzewski K, Li W, et al: The role
of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad
Sci USA. 102:19075–19080. 2005. View Article : Google Scholar : PubMed/NCBI
|
15
|
Pallante P, Visone R, Ferracin M, et al:
MicroRNA deregulation in human thyroid papillary carcinomas. Endocr
Relat Cancer. 13:497–508. 2006. View Article : Google Scholar : PubMed/NCBI
|
16
|
Tetzlaff MT, Liu A, Xu X, et al:
Differential expression of miRNAs in papillary thyroid carcinoma
compared to multinodular goiter using formalin fixed paraffin
embedded tissues. Endocr Pathol. 18:163–173. 2007. View Article : Google Scholar
|
17
|
Chen YT, Kitabayashi N, Zhou XK, Fahey TJ
III and Scognamiglio T: MicroRNA analysis as a potential diagnostic
tool for papillary thyroid carcinoma. Mod Pathol. 21:1139–1146.
2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chou CK, Chen RF, Chou FF, et al: miR-146b
is highly expressed in adult papillary thyroid carcinomas with high
risk features including extrathyroidal invasion and the BRAF(V600E)
mutation. Thyroid. 20:489–494. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Cahill S, Smyth P, Finn SP, et al: Effect
of ret/PTC 1 rearrangement on transcription and
post-transcriptional regulation in a papillary thyroid carcinoma
model. Mol Cancer. 5:702006. View Article : Google Scholar : PubMed/NCBI
|
20
|
Chung KW and Kim SW and Kim SW: Gene
expression profiling of papillary thyroid carcinomas in Korean
patients by oligonucleotide microarrays. J Korean Surg Soc.
82:271–280. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Tomei S, Mazzanti C, Marchetti I, et al:
c-KIT receptor expression is strictly associated with the
biological behaviour of thyroid nodules. J Transl Med. 10:72012.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Natali PG, Berlingieri MT, Nicotra MR, et
al: Transformation of thyroid epithelium is associated with loss of
c-kit receptor. Cancer Res. 55:1787–1791. 1995.PubMed/NCBI
|
23
|
Jacques C, Baris O, Prunier-Mirebeau D, et
al: Two-step differential expression analysis reveals a new set of
genes involved in thyroid oncocytic tumors. J Clin Endocrinol
Metab. 90:2314–2320. 2005. View Article : Google Scholar : PubMed/NCBI
|
24
|
Ashman LK: The biology of stem cell factor
and its receptor C-kit. Int J Biochem Cell Biol. 31:1037–1051.
1999. View Article : Google Scholar : PubMed/NCBI
|
25
|
Kitamura Y and Hirotab S: Kit as a human
oncogenic tyrosine kinase. Cell Mol Life Sci. 61:2924–2931. 2004.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Giordano S, Di Renzo MF, Narsimhan RP,
Cooper CS, Rosa C and Comoglio PM: Biosynthesis of the protein
encoded by the c-met proto-oncogene. Oncogene. 4:1383–1388.
1989.PubMed/NCBI
|
27
|
Ruppert AM, Beau-Faller M, Belmont L, et
al: A simple view on lung cancer biology: the MET pathway. Rev Mal
Respir. 28:1241–1249. 2011.(In French).
|
28
|
Scartozzi M, Loretelli C, Bearzi I, et al:
Allele polymorphisms of tumor integrins correlate with peritoneal
carcinosis capability of gastric cancer cells in radically resected
patients. Ann Oncol. 22:897–902. 2011. View Article : Google Scholar
|
29
|
Reis PP, Waldron L, Perez-Ordonez B, et
al: A gene signature in histologically normal surgical margins is
predictive of oral carcinoma recurrence. BMC Cancer. 11:4372011.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Lenci RE, Rachakonda PS, Kubarenko AV, et
al: Integrin genes and susceptibility to human melanoma.
Mutagenesis. 27:367–373. 2012. View Article : Google Scholar
|
31
|
Hood JD and Cheresh DA: Role of integrins
in cell invasion and migration. Nat Rev Cancer. 2:91–100. 2002.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Hynes RO: Integrins: versatility,
modulation, and signaling in cell adhesion. Cell. 69:11–25. 1992.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Lu JG, Li Y, Li L and Kan X:
Overexpression of osteopontin and integrin alphav in laryngeal and
hypopharyngeal carcinomas associated with differentiation and
metastasis. J Cancer Res Clin Oncol. 137:1613–1618. 2011.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Brunet A, Bonni A, Zigmond MJ, et al: Akt
promotes cell survival by phosphorylating and inhibiting a Forkhead
transcription factor. Cell. 96:857–868. 1999. View Article : Google Scholar : PubMed/NCBI
|
35
|
Schmid S, Bieber M, Zhang F, et al: Wnt
and hedgehog gene pathway expression in serous ovarian cancer. Int
J Gynecol Cancer. 21:975–980. 2011. View Article : Google Scholar : PubMed/NCBI
|
36
|
Sastre-Perona A and Santisteban P: Role of
the Wnt pathway in thyroid cancer. Front Endocrinol. 3:312012.
View Article : Google Scholar : PubMed/NCBI
|