1
|
Parkin DM, Bray F, Ferlay J and Pisani P:
Global cancer statistics, 2002. CA Cancer J Clin. 55:74–108. 2005.
View Article : Google Scholar
|
2
|
Jemal A, Siegel R, Ward E, Murray T, Xu J
and Thun M: Cancer statistics, 2008. CA Cancer J Clin. 58:71–96.
2008. View Article : Google Scholar
|
3
|
Hirsch FR, Franklin WA, Gazdar AF and Bunn
PA Jr: Early detection of lung cancer: clinical perspectives of
recent advances in biology and radiology. Clin Cancer Res. 7:5–22.
2001.PubMed/NCBI
|
4
|
Erridge S, Moller H, Price A and Brewster
D: International comparisons of survival from lung cancer: pitfalls
and warnings. Nat Clin Pract Oncol. 4:570–577. 2007. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kligerman S and White C: Epidemiology of
lung cancer in women: risk factors, survival, and screening. AJR Am
J Roentgenol. 196:287–295. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Cagle PT, Allen TC, Dacic S, Beasley MB,
Borczuk AC, Chirieac LR, Laucirica R, Ro JY and Kerr KM: Revolution
in lung cancer: new challenges for the surgical pathologist. Arch
Pathol Lab Med. 135:110–116. 2011.PubMed/NCBI
|
7
|
Steeg PS: Metastasis suppressors alter the
signal transduction of cancer cells. Nat Rev Cancer. 3:55–63. 2003.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Muller S, Hoege C, Pyrowolakis G and
Jentsch S: SUMO, ubiquitin’s mysterious cousin. Nat Rev Mol Cell
Biol. 2:202–210. 2001.
|
9
|
Gill G: SUMO and ubiquitin in the nucleus:
different functions, similar mechanisms? Genes Dev. 18:2046–2059.
2004. View Article : Google Scholar : PubMed/NCBI
|
10
|
Hay RT: SUMO: a history of modification.
Mol Cell. 18:1–12. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Lin D, Tatham MH, Yu B, Kim S, Hay RT and
Chen Y: Identification of a substrate recognition site on Ubc9. J
Biol Chem. 277:21740–21748. 2002. View Article : Google Scholar : PubMed/NCBI
|
12
|
Duan X, Trent JO and Ye H: Targeting the
SUMO E2 conjugating enzyme Ubc9 interaction for anti-cancer drug
design. Anticancer Agents Med Chem. 9:51–54. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Niedenthal R: Ubc9 fusion-directed
SUMOylation (UFDS). Biochem Soc Trans. 35:1430–1432. 2007.
View Article : Google Scholar
|
14
|
Galanty Y, Belotserkovskaya R, Coates J,
Polo S, Miller KM and Jackson SP: Mammalian SUMO E3-ligases PIAS1
and PIAS4 promote responses to DNA double-strand breaks. Nature.
462:935–939. 2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Vertegaal AC: SUMO chains: polymeric
signals. Biochem Soc Trans. 38:46–49. 2010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ahn JH, Xu Y, Jang WJ, Matunis MJ and
Hayward GS: Evaluation of interactions of human cytomegalovirus
immediate-early IE2 regulatory protein with small ubiquitin-like
modifiers and their conjugation enzyme Ubc9. J Virol. 75:3859–3872.
2001. View Article : Google Scholar : PubMed/NCBI
|
17
|
Moschos SJ, Smith AP, Mandic M, et al:
SAGE and antibody array analysis of melanoma-infiltrated lymph
nodes: identification of Ubc9 as an important molecule in
advanced-stage melanomas. Oncogene. 26:4216–4225. 2007. View Article : Google Scholar
|
18
|
Wu F, Zhu S, Ding Y, Beck WT and Mo YY:
MicroRNA-mediated regulation of Ubc9 expression in cancer cells.
Clin Cancer Res. 15:1550–1557. 2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Johnson ES: Protein modification by SUMO.
Annu Rev Biochem. 73:355–382. 2004. View Article : Google Scholar
|
20
|
Geiss-Friedlander R and Melchior F:
Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol.
8:947–956. 2007. View
Article : Google Scholar : PubMed/NCBI
|
21
|
Driscoll JJ, Pelluru D, Lefkimmiatis K, et
al: The sumoylation pathway is dysregulated in multiple myeloma and
is associated with adverse patient outcome. Blood. 115:2827–2834.
2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Moschos SJ, Jukic DM, Athanassiou C, et
al: Expression analysis of Ubc9, the single small ubiquitin-like
modifier (SUMO) E2 conjugating enzyme, in normal and malignant
tissues. Hum Pathol. 41:1286–1298. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Vertegaal AC: Small ubiquitin-related
modifiers in chains. Biochem Soc Trans. 35:1422–1423. 2007.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Wu SY and Chiang CM: p53 sumoylation:
mechanistic insights from reconstitution studies. Epigenetics.
4:445–451. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Nowak M and Hammerschmidt M: Ubc9
regulates mitosis and cell survival during zebrafish development.
Mol Biol Cell. 17:5324–5336. 2006. View Article : Google Scholar : PubMed/NCBI
|
26
|
Fu M, Wang C, Wang J, Zhang X, et al:
Androgen receptor acetylation governs transactivation and
MEKK1-induced apoptosis without affecting in vitro sumoylation and
trans-repression function. Mol Cell Biol. 22:3373–3388. 2002.
View Article : Google Scholar
|
27
|
Vatsyayan J, Qing G, Xiao G and Hu J:
SUMO1 modification of NF-kappaB2/p100 is essential for
stimuli-induced p100 phosphorylation and processing. EMBO Rep.
9:885–890. 2008. View Article : Google Scholar : PubMed/NCBI
|
28
|
Moschos SJ and Mo YY: Role of SUMO/Ubc9 in
DNA damage repair and tumorigenesis. J Mol Histol. 37:309–319.
2006. View Article : Google Scholar : PubMed/NCBI
|
29
|
Mo YY and Moschos SJ: Targeting Ubc9 for
cancer therapy. Expert Opin Ther Targets. 9:1203–1216. 2005.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Lu Z, Wu H and Mo YY: Regulation of bcl-2
expression by Ubc9. Exp Cell Res. 312:1865–1875. 2006. View Article : Google Scholar : PubMed/NCBI
|
31
|
Mo YY, Yu Y, Theodosiou E, Ee PL and Beck
WT: A role for Ubc9 in tumorigenesis. Oncogene. 24:2677–2683. 2005.
View Article : Google Scholar : PubMed/NCBI
|