1
|
Parkin DM, Pisani P and Ferlay J:
Estimates of the worldwide incidence of eighteen major cancers in
1985. Int J Cancer. 54:594–606. 1993. View Article : Google Scholar : PubMed/NCBI
|
2
|
Camisasca DR, Silami MA, Honorato J, Dias
FL, Faria PA and Lourenço SD: Oral squamous cell carcinoma:
clinicopathological features in patients with and without
recurrence. ORL J Otorhinolaryngol Relat Spec. 73:170–176. 2011.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Uchida K, Oga A, Nakao M, Mano T, Mihara
M, Kawauchi S, Furuya T, Ueyama Y and Sasaki K: Loss of 3p26.3 is
an independent prognostic factor in patients with oral squamous
cell carcinoma. Oncol Rep. 26:463–469. 2011.PubMed/NCBI
|
4
|
Hanash SM, Bobek MP, Rickman DS, Williams
T, Rouillard JM, Kuick R and Puravs E: Integrating cancer genomics
and proteomics in the post-genome era. Proteomics. 2:69–75. 2002.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Snyder M and Gerstein M: Genomics.
Defining genes in the genomics era. Science. 300:258–260. 2003.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Fields S: Proteomics in genomeland.
Science. 291:1221–1224. 2001. View Article : Google Scholar : PubMed/NCBI
|
7
|
Carr KM, Rosenblatt K, Petricoin EF, et
al: Genomic and proteomic approaches for studying human cancer:
prospects for true patient-tailored therapy. Hum Genomics.
1:134–140. 2004. View Article : Google Scholar : PubMed/NCBI
|
8
|
Lee SS, Tsai CH, Ho YC and Chang YC: The
upregulation of heat shock protein 70 expression in areca quid
chewing-associated oral squamous cell carcinomas. Oral Oncol.
44:884–890. 2008. View Article : Google Scholar : PubMed/NCBI
|
9
|
Markopoulos AK, Deligianni E and
Antoniades DZ: Heat shock protein 70 membrane expression in oral
cancer: a possible new target in antineoplastic therapy?
Chemotherapy. 55:211–214. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhao JJ, Chen J, Wang ZP, Pan J and Huang
YH: Double labeling and comparison of fluorescence intensity and
photostability between quantum dots and FITC in oral tumors. Mol
Med Report. 4:425–429. 2011.PubMed/NCBI
|
11
|
Doty RC, Fernig DG and Levy R: Nanoscale
science: a big step towards the Holy Grail of single molecule
biochemistry and molecular biology. Cell Mol Life Sci.
61:1843–1849. 2004.PubMed/NCBI
|
12
|
Hanaki K, Momo A, Oku T, Komoto A,
Maenosono S, Yamaguchi Y and Yamamoto K: Semiconductor quantum
dot/albumin complex is a long-life and highly photostable endosome
marker. Biochem Biophys Res Commun. 302:496–501. 2003. View Article : Google Scholar : PubMed/NCBI
|
13
|
McMahon RJ: Chemical reactions involving
quantum tunneling. Science. 299:833–834. 2003. View Article : Google Scholar : PubMed/NCBI
|
14
|
Banerjee B, Miedema B and Chandrasekhar
HR: Emission spectra of colonic tissue and endogenous fluorophores.
Am J Med Sci. 316:220–226. 1998. View Article : Google Scholar : PubMed/NCBI
|
15
|
Alivisatos P: The use of nanocrystals in
biological detection. Nat Biotechnol. 22:47–52. 2004. View Article : Google Scholar : PubMed/NCBI
|
16
|
Garon EB, Marcu L, Luong Q,
Tcherniantchouk O, Crooks GM and Koeffler HP: Quantum dot labeling
and tracking of human leukemic, bone marrow and cord blood cell.
Leuk Res. 31:643–651. 2007. View Article : Google Scholar : PubMed/NCBI
|
17
|
Bruchez M Jr, Moronne M, Gin P, Weiss S
and Alivisatos AP: Semiconductor nanocrystals as fluorescent
biological labels. Science. 281:2013–2016. 1998. View Article : Google Scholar
|
18
|
Wang HZ, Wang HY, Liang RQ and Ruan KC:
Detection of tumor marker CA125 in ovarian carcinoma using quantum
dots. Acta Biochim Biophys Sin. 36:681–686. 2004. View Article : Google Scholar : PubMed/NCBI
|
19
|
Li Z, Wang K, Tan W, Li J, Fu Z, Ma C, Li
H, He X and Liu J: Immunofluorescent labeling of cancer cells with
quantum dots synthesized in aqueous solution. Anal Biochem.
354:169–174. 2006. View Article : Google Scholar : PubMed/NCBI
|
20
|
Yezhelyev MV, Gao X, Xing Y, Al-Hajj A,
Nie S and O’Regan RM: Emerging use of nanoparticles in diagnosis
and treatment of breast cancer. Lancet Oncol. 7:657–667. 2006.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Tholouli E, Hoyland JA, Di Vizio D,
O’Connell F, Macdermott SA, Twomey D, Levenson R, Yin JA, Golub TR,
Loda M and Byers R: Imaging of multiple mRNA targets using quantum
dot based in situ hybridization and spectral deconvolution in
clinical biopsies. Biochem Biophys Res Commun. 348:628–636. 2006.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Azzazy HM, Mansour MM and Kazmierczak SC:
From diagnostics to therapy: prospects of quantum dots. Clin
Biochem. 40:917–927. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Wu X, Liu H, Liu J, Haley KN, Treadway JA,
Larson JP, Ge N, Peale F and Bruchez MP: Immunofluorescent labeling
of cancer marker Her2 and other cellular targets with semiconductor
quantum dots. Nat Biotechnol. 21:41–46. 2003. View Article : Google Scholar : PubMed/NCBI
|
24
|
Lidke DS, Nagy P, Heintzmann R,
Arndt-Jovin DJ, Post JN, Grecco HE, Jares-Erijman EA and Jovin TM:
Quantum dot ligands provide new insights into erbB/HER
receptor-mediated signal transduction. Nat Biotechnol. 22:198–203.
2004. View
Article : Google Scholar : PubMed/NCBI
|
25
|
Jaiswal JK, Mattoussi H, Mauro JM and
Simon SM: Long-term multiple color imaging of live cells using
quantum dot bioconjugates. Nat Biotechnol. 21:47–51. 2003.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Chan WC, Maxwell DJ, Gao X, Bailey RE, Han
M and Nie S: Luminescent quantum dots for multiplexed biological
detection and imaging. Curr Opin Biotechnol. 13:40–46. 2002.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Hall M, Kazakova I and Yao YM: High
sensitivity immunoassays using particulate fluorescent labels. Anal
Biochem. 272:165–170. 1999. View Article : Google Scholar : PubMed/NCBI
|
28
|
Gao X, Cui Y, Levenson RM, Chung LW and
Nie S: In vivo cancer targeting and imaging with semiconductor
quantum dots. Nat Biotechnol. 22:969–976. 2004. View Article : Google Scholar : PubMed/NCBI
|
29
|
Medintz IL, Uyeda HT, Goldman ER and
Mattoussi H: Quantum dot bioconjugates for imaging, labelling and
sensing. Nat Mater. 4:435–446. 2005. View
Article : Google Scholar : PubMed/NCBI
|
30
|
Sukhanova A, Devy J, Venteo L, Kaplan H,
Artemyev M, Oleinikov V, Klinov D, Pluot M, Cohen JH and Nabiev I:
Biocompatible fluorescent nanocrystals for immunolabeling of
membrane proteins and cells. Anal Biochem. 324:60–67. 2004.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Zahavy E, Freeman E, Lustig S, Keysary A
and Yitzhaki S: Double labeling and simultaneous detection of B-
and T cells using fluorescent nano-crystal (q-dots) in
paraffin-embedded tissues. J Fluoresc. 15:661–665. 2005. View Article : Google Scholar : PubMed/NCBI
|
32
|
Abe T, Gotoh S and Higashi K: Higher
induction of heat shock protein 72 by heat stress in
cisplatin-resistant than in cisplatin-sensitive cancer cells.
Biochim Biophys Acta. 1445:123–133. 1999. View Article : Google Scholar : PubMed/NCBI
|
33
|
Tavassol F, Starke OF, Kokemüller H,
Wegener G, Müller-Tavassol CC, Gellrich NC and Eckardt A:
Prognostic significance of heat shock protein 70 (HSP70) in
patients with oral cancer. Head Neck Oncol. 3:102011. View Article : Google Scholar : PubMed/NCBI
|
34
|
Park SR, Lee KD, Kim UK, Gil YG, Oh KS,
Park BS and Kim GC: Pseudomonas aeruginosa exotoxin A
reduces chemoresistance of oral squamous carcinoma cell via
inhibition of heat shock proteins 70 (HSP70). Yonsei Med J.
51:708–716. 2010. View Article : Google Scholar
|
35
|
Chen X, Tao Q, Yu H, Zhang L and Cao X:
Tumor cell membrane-bound heat shock protein 70 elicits antitumor
immunity. Immunol Lett. 84:81–87. 2002. View Article : Google Scholar : PubMed/NCBI
|
36
|
Thiel UJ, Feltens R, Adryan B, Gieringer
R, Brochhausen C, Schuon R, Fillies T, Grus F, Mann WJ and Brieger
J: Analysis of differentially expressed proteins in oral squamous
cell carcinoma by MALDI-TOF MS. J Oral Pathol Med. 40:369–379.
2011. View Article : Google Scholar : PubMed/NCBI
|
37
|
Akerfelt M, Morimoto RI and Sistonen L:
Heat shock factors: integrators of cell stress, development and
lifespan. Nat Rev Mol Cell Biol. 11:545–555. 2010. View Article : Google Scholar : PubMed/NCBI
|
38
|
Westerheide SD and Morimoto RI: Heat shock
response modulators as therapeutic tools for diseases of protein
conformation. J Biol Chem. 280:33097–33100. 2005. View Article : Google Scholar : PubMed/NCBI
|
39
|
Clos J, Westwood JT, Becker PB, Wilson S,
Lambert K and Wu C: Molecular cloning and expression of a hexameric
Drosophila heat shock factor subject to negative regulation.
Cell. 63:1085–1097. 1990.PubMed/NCBI
|
40
|
Sorger PK and Pelham HR: Yeast heat shock
factor is an essential DNA-binding protein that exhibits
temperature-dependent phosphorylation. Cell. 54:855–864. 1988.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Wiederrecht G, Seto D and Parker CS:
Isolation of the gene encoding the S. cerevisiae heat shock
transcription factor. Cell. 54:841–853. 1988.PubMed/NCBI
|
42
|
Westerheide SD, Raynes R, Powell C, Xue B
and Uversky VN: HSF transcription factor family, heat shock
response, and protein intrinsic disorder. Curr Protein Pept Sci.
13:86–103. 2012. View Article : Google Scholar : PubMed/NCBI
|
43
|
Hensen SM, Heldens L, van Enckevort CM,
van Genesen ST, Pruijn GJ and Lubsen NH: Heat shock factor 1 is
inactivated by amino acid deprivation. Cell Stress Chaperones.
17:743–755. 2012. View Article : Google Scholar : PubMed/NCBI
|
44
|
Xiao Y and Gao X: Use of IgY antibodies
and semiconductor nanocrystal detection in cancer biomarker
quantitation. Biomark Med. 4:227–239. 2010. View Article : Google Scholar : PubMed/NCBI
|
45
|
Sweeney E, Ward TH, Gray N, Womack C,
Jayson G, Hughes A, Dive C and Byers R: Quantitative multiplexed
quantum dot immunohistochemistry. Biochem Biophys Res Commun.
374:181–186. 2008. View Article : Google Scholar : PubMed/NCBI
|
46
|
Xing Y, Chaudry Q, Shen C, Kong KY, Zhau
HE, Chung LW, Petros JA, O’Regan RM, Yezhelyev MV, Simons JW, Wang
MD and Nie S: Bioconjugated quantum dots for multiplexed and
quantitative immunohistochemistry. Nat Protoc. 2:1152–1165. 2007.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Byers RJ, Di Vizio D, O’connell F,
Tholouli E, Levenson RM, Gossage K, Twomey D, Yang Y, Benedettini
E, Rose J, Ligon KL, Finn SP, Golub TR and Loda M: Semiautomated
multiplexed quantum dot-based in situ hybridization and spectral
deconvolution. J Mol Diagn. 9:20–29. 2007. View Article : Google Scholar : PubMed/NCBI
|