1
|
Zauli G, Visani G, Bassini A, et al:
Nuclear translocation of protein kinase C-alpha and -beta isoforms
in HL-60 cells induced to differentiate along the granulocytic
lineage by all-trans retinoic acid. Br J Haematol.
93:542–550. 1996. View Article : Google Scholar : PubMed/NCBI
|
2
|
Yung WK, Lotan R and Lee P: Modulation of
growth and epidermal growth factor receptor activity by retinoic
acid in human glioma cells. Cancer Res. 49:1014–1019.
1989.PubMed/NCBI
|
3
|
Idres N, Benoît G, Flexor MA, Lanotte M
and Chabot GG: Granulocytic differentiation of human NB4
promyelocytic leukemia cells induced by all-trans retinoic
acid metabolites. Cancer Res. 6:700–705. 2001.PubMed/NCBI
|
4
|
Launay S, Gianni M, Diomede L, et al:
Enhancement of ATRA-induced cell differentiation by inhibition of
calcium accumulation into the endoplasmic reticulum: cross-talk
between RARα and calcium-dependent signaling. Blood. 101:3220–3228.
2003.PubMed/NCBI
|
5
|
Chambon P: A decade of molecular biology
of retinoic acid receptors. FASEB J. 10:940–954. 1996.PubMed/NCBI
|
6
|
Mrass P, Rendl M, Mildner M, et al:
Retinoic acid increases the expression of p53 and proapoptotic
caspases and sensitizes keratinocytes to apoptosis: a possible
explanation for tumor preventive action of retinoids. Cancer Res.
64:6542–6548. 2004. View Article : Google Scholar : PubMed/NCBI
|
7
|
Um SJ, Kim EJ, Hwang ES, et al:
Antiproliferative effects of retinoic acid/interferon in cervical
carcinoma cell lines: cooperative growth suppression of IRF-1 and
p53. Int J Cancer. 85:416–423. 2000. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zheng A, Mäntymaa P, Säily M, et al: p53
pathway in apoptosis induced by all-trans-retinoic acid in
acute myeloblastic leukaemia cells. Acta Haematol. 103:135–143.
2000. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ronca F, Yee KS and Yu VC: Retinoic acid
confers resistance to p53-dependent apoptosis in SH-SY5Y
neuroblastoma cells by modulating nuclear import of p53. J Biol
Chem. 274:18128–18134. 1999. View Article : Google Scholar : PubMed/NCBI
|
10
|
Curtin JC, Dragnev KH, Sekula D, Christie
AJ, Dmitrovsky E and Spinella MJ: Retinoic acid activates p53 in
human embryonal carcinoma through retinoid receptor-dependent
stimulation of p53 transactivation function. Oncogene.
20:2559–2569. 2001. View Article : Google Scholar
|
11
|
Zeng L, Fagotto F, Zhang T, et al: The
mouse Fused locus encodes Axin, an inhibitor of the Wnt signaling
pathway that regulates embryonic axis formation. Cell. 90:181–192.
1997. View Article : Google Scholar : PubMed/NCBI
|
12
|
Satoh S, Daigo Y, Furukawa Y, et al: AXIN1
mutations in hepatocellular carcinomas, and growth suppression in
cancer cells by virus-mediated transfer of AXIN1. Nat Genet.
24:245–250. 2000. View
Article : Google Scholar : PubMed/NCBI
|
13
|
Hsu W, Shakyo R and Costantini F: Impaired
mammary gland and lymphoid development caused by inducible
expression of Axin in transgenic mice. J Cell Biol. 155:1055–1064.
2001. View Article : Google Scholar : PubMed/NCBI
|
14
|
Peifer M and Polakis P: Wnt signaling in
oncogenesis and embryogenesis - a look outside the nucleus.
Science. 287:1606–1609. 2000. View Article : Google Scholar : PubMed/NCBI
|
15
|
Luo W, Ng WW, Jin LH, Ye Z, Han J and Lin
SC: Axin utilizes distinct regions for competitive MEKK1 and MEKK4
binding and JNK activation. J Biol Chem. 278:37451–37458. 2003.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Liu W, Rui H, Wang J, et al: Axin is a
scaffold protein in TGF-β signaling that promotes degradation of
Smad7 by Arkadia. EMBO J. 25:1646–1658. 2006.
|
17
|
Lyu J, Costantini F, Jho EH and Joo CK:
Ectopic expression of Axin blocks neuronal differentiation of
embryonic carcinoma P19 cells. J Biol Chem. 278:13487–13495. 2003.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Lu J, Zhang F, Zhao D, et al:
ATRA-inhibited proliferation in glioma cells is associated with
subcellular redistribution of β-catenin via up-regulation of Axin.
J Neurooncol. 87:271–277. 2008.PubMed/NCBI
|
19
|
Rui Y, Xu Z, Lin S, et al: Axin stimulates
p53 functions by activation of HIPK2 kinase through multimeric
complex formation. EMBO J. 23:4583–4594. 2004. View Article : Google Scholar : PubMed/NCBI
|
20
|
Li QX, Wang X, Wu X, et al: Daxx
cooperates with the Axin/HIPK2/px53 complex to induce cell death.
Cancer Res. 67:66–74. 2007. View Article : Google Scholar : PubMed/NCBI
|
21
|
Karmakar S, Banik NL and Ray SK:
Combination of all-trans retinoic acid and
paclitaxel-induced differentiation and apoptosis in human
glioblastoma U87MG xenografts in nude mice. Cancer. 112:596–607.
2008.
|
22
|
Papi A, Bartolini G, Ammar K, Guerra F,
Ferreri AM, Rocchi P and Orlandi M: Inhibitory effects of retinoic
acid and IIF on growth, migration and invasiveness in the U87MG
human glioblastoma cell line. Oncol Rep. 18:1015–1021.
2007.PubMed/NCBI
|
23
|
Karmakar S, Banik NL, Patel SJ and Ray SK:
Combination of all-trans retinoic acid and taxol regressed
glioblastoma T98G xenografts in nude mice. Apoptosis. 12:2077–2087.
2007.
|
24
|
Zhang R, Banik NL and Ray SK: Combination
of all-trans retinoic acid and interferon-gamma suppressed
PI3K/Akt survival pathway in glioblastoma T98G cells whereas
NF-kappaB survival signaling in glioblastoma U87MG cells for
induction of apoptosis. Neurochem Res. 32:2194–2202. 2007.
|
25
|
Vogelstein B and Kinzler KW: p53 function
and dysfunction. Cell. 70:523–526. 1992. View Article : Google Scholar
|
26
|
Levine AJ: p53, the cellular gatekeeper
for growth and division. Cell. 88:323–331. 1997. View Article : Google Scholar : PubMed/NCBI
|
27
|
Timiryasova TM, Chen B, Haghighat P and
Fodor I: Vaccinia virus-mediated expression of wild-type p53
suppresses glioma cell growth and induces apoptosis. Int J Oncol.
14:845–854. 1999.PubMed/NCBI
|
28
|
Cirielli C and Inyaku K:
Adenovirus-mediated wild-type p53 expression induces apoptosis and
suppresses tumorigenesis of experimental intracranial human
malignant glioma. J Neurooncol. 43:99–108. 1999. View Article : Google Scholar
|
29
|
Merzak A, Raynal S, Rogers JP, Lawrence D
and Pilkington GJ: Human wild type p53 inhibits cell proliferation
and elicits dramatic morphological changes in human glioma cell
lines in vitro. J Neuro Sci. 127:125–133. 1994. View Article : Google Scholar : PubMed/NCBI
|
30
|
Shin DM, Xu XC, Lippman SM, et al:
Accumulation of p53 protein and retinoic acid receptor β in
retinoid chemoprevention. Clin Cancer Res. 3:875–880. 1997.
|
31
|
Li PF, Dietz R and von Harsdorf R: p53
regulates mitochondrial membrane potential through reactive oxygen
species and induces cytochrome c independent apoptosis blocked by
Bcl-2. EMBO J. 18:6027–6036. 1999. View Article : Google Scholar
|
32
|
Lee SW, Fang L, Igarashi M, Ouchi T, Lu KP
and Aaronson SA: Sustained activation of Ras/Raf/mitogen-activated
protein kinase cascade by the tumor suppressor p53. Proc Natl Acad
Sci USA. 97:8302–8305. 2000. View Article : Google Scholar : PubMed/NCBI
|
33
|
Yamaguchi A, Tamatani M, Matsuzaki H, et
al: Akt activation protects hippocampal neurons from apoptosis by
inhibiting transcriptional activity of p53. J Biol Chem.
271:31929–31936. 1996.
|