1
|
Yu MC and Yuan JM: Epidemiology of
nasopharyngeal carcinoma. Semin Cancer Biol. 12:421–429. 2002.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Chan TC, Teo ML and Johnson J:
Nasopharyngeal carcinoma. Ann Oncol. 13:1007–1015. 2002. View Article : Google Scholar : PubMed/NCBI
|
3
|
Zhang XS, Wang HH, Hu LF, et al: V-val
subtype of Epstein-Barr virus nuclear antigen 1 preferentially
exists in biopsies of nasopharyngeal carcinoma. Cancer Lett.
211:11–18. 2004. View Article : Google Scholar : PubMed/NCBI
|
4
|
Hu C, Wei W, Chen X, et al: A global view
of the oncogenic landscape in nasopharyngeal carcinoma: an
integrated analysis at the genetic and expression levels. PLoS One.
7:e410552012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Fujisaku A, Harley JB, Frank MB, Gruner
BA, Frazier B and Holers VM: Genomic organization and polymorphisms
of the human C3d/Epstein-Barr virus receptor. J Biol Chem.
264:2118–2125. 1989.PubMed/NCBI
|
6
|
Hirunsatit R, Kongruttanachok N,
Shotelersuk K, et al: Polymeric immunoglobulin receptor
polymorphisms and risk of nasopharyngeal cancer. BMC Genet.
4:32003. View Article : Google Scholar : PubMed/NCBI
|
7
|
Zheng Y, Zhang W, Ye Q, et al: Inhibition
of Epstein-Barr virus infection by lactoferrin. J Innate Immun.
4:387–398. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Shao X, He Z, Chen Z and Yao K: Expression
of an Epstein-Barr-virus receptor and Epstein-Barr-virus-dependent
transformation of human nasopharyngeal epithelial cells. Int J
Cancer. 71:750–755. 1997. View Article : Google Scholar
|
9
|
Wu H, Boackle SA, Hanvivadhanakul P, et
al: Association of a common complement receptor 2 haplotype with
increased risk of systemic lupus erythematosus. Proc Natl Acad Sci
USA. 104:3961–3966. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Cruickshank MN, Karimi M, Mason RL, et al:
Transcriptional effects of a lupus-associated polymorphism in the
5′ untranslated region (UTR) of human complement receptor 2
(CR2/CD21). Mol Immunol. 52:165–173. 2012.PubMed/NCBI
|
11
|
Simon K, Yang X, Munger K, et al:
Variation in the Epstein-Barr virus receptor, CR2, and risk of
multiple sclerosis. Mult Scler. 13:947–948. 2007. View Article : Google Scholar : PubMed/NCBI
|
12
|
Ghandri N, Gabbouj S, Farhat K, et al:
Association of HLA-G polymorphisms with nasopharyngeal carcinoma
risk and clinical outcome. Hum Immunol. 72:150–158. 2011.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Chen Y and Chan SH: Polymorphism of T-cell
receptor genes in nasopharyngeal carcinoma. Int J Cancer.
56:830–833. 1994. View Article : Google Scholar : PubMed/NCBI
|
14
|
Jia WH, Pan QH, Qin HD, et al: A
case-control and a family-based association study revealing an
association between CYP2E1 polymorphisms and nasopharyngeal
carcinoma risk in Cantonese. Carcinogenesis. 30:2031–2036. 2009.
View Article : Google Scholar : PubMed/NCBI
|
15
|
He JF, Jia WH, Fan Q, et al: Genetic
polymorphisms of TLR3 are associated with nasopharyngeal carcinoma
risk in Cantonese population. BMC Cancer. 7:1942007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhou XX, Jia WH, Shen GP, et al: Sequence
variants in toll-like receptor 10 are associated with
nasopharyngeal carcinoma risk. Cancer Epidemiol Biomarkers Prev.
15:862–866. 2006. View Article : Google Scholar : PubMed/NCBI
|
17
|
Cho EY, Hildesheim A, Chen CJ, et al:
Nasopharyngeal carcinoma and genetic polymorphisms of DNA repair
enzymes XRCC1 and hOGG1. Cancer Epidemiol Biomarkers Prev.
12:1100–1104. 2003.PubMed/NCBI
|
18
|
Wang G, Guo X and Floros J: Human SP-A
3′-UTR variants mediate differential gene expression in basal
levels and in response to dexamethasone. Am J Physiol Lung Cell Mol
Physiol. 284:L738–L748. 2003.
|
19
|
Sham PC and Curtis D: Monte Carlo tests
for associations between disease and alleles at highly polymorphic
loci. Ann Hum Genet. 59:97–105. 1995. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ng WT, Yau TK, Yung RW, et al: Screening
for family members of patients with nasopharyngeal carcinoma. Int J
Cancer. 113:998–1001. 2005. View Article : Google Scholar : PubMed/NCBI
|
21
|
Cheung F, Pang SW, Hioe F, et al:
Nasopharyngeal carcinoma in situ: two cases of an emerging
diagnostic entity. Cancer. 83:1069–1073. 1998. View Article : Google Scholar : PubMed/NCBI
|
22
|
Rajcani J and Kudelova M: Gamma
herpesviruses: pathogenesis of infection and cell signaling. Folia
Microbiol. 48:291–318. 2003. View Article : Google Scholar : PubMed/NCBI
|
23
|
Lohmueller KE, Pearce CL, Pike M, et al:
Meta-analysis of genetic association studies supports a
contribution of common variants to susceptibility to common
disease. Nat Genet. 33:177–182. 2003. View
Article : Google Scholar : PubMed/NCBI
|
24
|
Wang G, Guo X and Floros J: Differences in
the translation efficiency and mRNA stability mediated by 5′-UTR
splice variants of human SP-A1 and SP-A2 genes. Am J Physiol Lung
Cell Mol Physiol. 289:497–508. 2005.
|
25
|
Shalev A, Blair PJ, Hoffmann SC, et al: A
proinsulin gene splice variant with increased translation
efficiency is expressed in human pancreatic islets. Endocrinology.
143:2541–2547. 2002. View Article : Google Scholar : PubMed/NCBI
|
26
|
Kos M, Denger S, Reid G, et al: Upstream
open reading frames regulate the translation of the multiple mRNA
variants of the estrogen receptor alpha. J Biol Chem.
277:37131–37138. 2002. View Article : Google Scholar : PubMed/NCBI
|
27
|
Hua XJ, Van de Cotte B, Van Montagu M, et
al: The 5′untranslated region of the At-P5R gene is involved in
both transcriptional and post-transcriptional regulation. Plant J.
26:157–169. 2001.
|
28
|
Kebaara B, Nazarenus T, Taylor R, et al:
The Upf-dependent decay of wild-type PPR1 mRNA depends on its
5′-UTR and first 92 ORF nucleotides. Nucleic Acids Res.
31:3157–3165. 2003.PubMed/NCBI
|
29
|
Zou Z, Eibl C and Koop HU: The stem-loop
region of the tobacco psbA 5′UTR is an important determinant of
mRNA stability and translation efficiency. Mol Genet Genomics.
269:340–349. 2003.
|
30
|
Vagner S, Galy B and Pyronnet S:
Irresistible IRES. Attracting the translation machinery to internal
ribosome entry sites. EMBO Rep. 2:893–898. 2001. View Article : Google Scholar : PubMed/NCBI
|
31
|
Rubtsova MP, Sizova DV, Dmitriev SE, et
al: Distinctive properties of the 5′-untranslated region of human
hsp70 mRNA. J Biol Chem. 278:22350–22356. 2003.
|
32
|
Vereshchagina LA, Tolnay M and Tsokos GC:
Multiple transcription factors regulate the inducible expression of
the human complement receptor 2 promoter. J Immunol. 166:6156–6163.
2001. View Article : Google Scholar : PubMed/NCBI
|