1
|
Carriaga MT and Henson DE: Liver,
gallbladder, extrahepatic bile ducts, and pancreas. Cancer.
75:171–190. 1995. View Article : Google Scholar : PubMed/NCBI
|
2
|
Glauser PM, Strub D, Kaser SA, Mattiello
D, Rieben F and Maurer CA: Incidence, management, and outcome of
incidental gallbladder carcinoma: analysis of the database of the
Swiss Association of Laparoscopic and Thoracoscopic Surgery. Surg
Endosc. 24:2281–2286. 2010. View Article : Google Scholar
|
3
|
Gourgiotis S, Kocher HM, Solaini L,
Yarollahi A, Tsiambas E and Salemis NS: Gallbladder cancer. Am J
Surg. 196:252–264. 2008. View Article : Google Scholar
|
4
|
Sugiyama Y, Kobori H, Hakamada K, Seito D
and Sasaki M: Altered bile composition in the gallbladder and
common bile duct of patients with anomalous pancreaticobiliary
ductal junction. World J Surg. 24:17–21. 2000. View Article : Google Scholar : PubMed/NCBI
|
5
|
Hanada K, Itoh M, Fujii K, et al:
Pathology and cellular kinetics of gallbladder with an anomalous
junction of the pancreaticobiliary duct. Am J Gastroenterol.
91:1007–1011. 1996.PubMed/NCBI
|
6
|
Matsubara T, Sakurai Y, Zhi LZ, Miura H,
Ochiai M and Funabiki T: K-ras and p53 gene mutations in
noncancerous biliary lesions of patients with pancreaticobiliary
maljunction. J Hepatobiliary Pancreat Surg. 9:312–321. 2002.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Tsuchida A and Itoi T: Carcinogenesis and
chemoprevention of biliary tract cancer in pancreaticobiliary
maljunction. World J Gastrointest Oncol. 2:130–135. 2010.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Xiong L, Yang Z, Yang L, Liu J and Miao X:
Expressive levels of MUC1 and MUC5AC and their clinicopathologic
significances in the benign and malignant lesions of gallbladder. J
Surg Oncol. 105:97–103. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Shimada K, Yanagisawa J and Nakayama F:
Increased lysophosphatidylcholine and pancreatic enzyme content in
bile of patients with anomalous pancreaticobiliary ductal junction.
Hepatology. 13:438–444. 1991. View Article : Google Scholar
|
10
|
Volinia S, Calin GA, Liu CG, et al: A
microRNA expression signature of human solid tumors defines cancer
gene targets. Proc Natl Acad Sci USA. 103:2257–2261. 2006.
View Article : Google Scholar
|
11
|
Griffiths-Jones S: miRBase: microRNA
sequences and annotation. Curr Protoc Bioinformatics. Chapter
12(Unit 12): 91–10. 2010. View Article : Google Scholar
|
12
|
Esquela-Kerscher A and Slack FJ: Oncomirs
- microRNAs with a role in cancer. Nat Rev Cancer. 6:259–269. 2006.
View Article : Google Scholar
|
13
|
Gironella M, Seux M, Xie MJ, et al: Tumor
protein 53-induced nuclear protein 1 expression is repressed by
miR-155, and its restoration inhibits pancreatic tumor development.
Proc Natl Acad Sci USA. 104:16170–16175. 2007. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yanaihara N, Caplen N, Bowman E, et al:
Unique microRNA molecular profiles in lung cancer diagnosis and
prognosis. Cancer Cell. 9:189–198. 2006. View Article : Google Scholar : PubMed/NCBI
|
15
|
Jiang S, Zhang HW, Lu MH, et al:
MicroRNA-155 functions as an OncomiR in breast cancer by targeting
the suppressor of cytokine signaling 1 gene. Cancer Res.
70:3119–3127. 2010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Eis PS, Tam W, Sun L, et al: Accumulation
of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad
Sci USA. 102:3627–3632. 2005. View Article : Google Scholar : PubMed/NCBI
|
17
|
Tili E, Michaille JJ, Wernicke D, et al:
Mutator activity induced by microRNA-155 (miR-155) links
inflammation and cancer. Proc Natl Acad Sci USA. 108:4908–4913.
2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Gregory PA, Bert AG, Paterson EL, et al:
The miR-200 family and miR-205 regulate epithelial to mesenchymal
transition by targeting ZEB1 and SIP1. Nat Cell Biol. 10:593–601.
2008. View
Article : Google Scholar : PubMed/NCBI
|
19
|
Zhang L, Mizumoto K, Sato N, et al:
Quantitative determination of apoptotic death in cultured human
pancreatic cancer cells by propidium iodide and digitonin. Cancer
Lett. 142:129–137. 1999. View Article : Google Scholar : PubMed/NCBI
|
20
|
Shibuya H, Iinuma H, Shimada R, Horiuchi A
and Watanabe T: Clinicopathological and prognostic value of
microRNA-21 and microRNA-155 in colorectal cancer. Oncology.
79:313–320. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhou SL and Wang LD: Circulating
microRNAs: novel biomarkers for esophageal cancer. World J
Gastroenterol. 16:2348–2354. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Heneghan HM, Miller N, Lowery AJ, Sweeney
KJ, Newell J and Kerin MJ: Circulating microRNAs as novel minimally
invasive biomarkers for breast cancer. Ann Surg. 251:499–505. 2010.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Mitchell PS, Parkin RK, Kroh EM, et al:
Circulating microRNAs as stable blood-based markers for cancer
detection. Proc Natl Acad Sci USA. 105:10513–10518. 2008.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Kosaka N, Iguchi H and Ochiya T:
Circulating microRNA in body fluid: a new potential biomarker for
cancer diagnosis and prognosis. Cancer Sci. 101:2087–2092. 2010.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Fang C, Zhu DX, Dong HJ, et al: Serum
microRNAs are promising novel biomarkers for diffuse large B cell
lymphoma. Ann Hematol. 91:553–559. 2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Lawrie CH, Gal S, Dunlop HM, et al:
Detection of elevated levels of tumour-associated microRNAs in
serum of patients with diffuse large B-cell lymphoma. Br J
Haematol. 141:672–675. 2008. View Article : Google Scholar : PubMed/NCBI
|
27
|
Shigehara K, Yokomuro S, Ishibashi O, et
al: Real-time PCR-based analysis of the human bile microRNAome
identifies miR-9 as a potential diagnostic biomarker for biliary
tract cancer. PLoS One. 6:e235842011. View Article : Google Scholar
|
28
|
Kasinski AL and Slack FJ: MicroRNAs en
route to the clinic: progress in validating and targeting microRNAs
for cancer therapy. Nat Rev Cancer. 11:849–864. 2011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Garzon R, Marcucci G and Croce CM:
Targeting microRNAs in cancer: rationale, strategies and
challenges. Nat Rev Drug Discov. 9:775–789. 2010. View Article : Google Scholar : PubMed/NCBI
|
30
|
Xie Q, Chen X, Lu F, et al: Aberrant
expression of microRNA 155 may accelerate cell proliferation by
targeting sex-determining region Y box 6 in hepatocellular
carcinoma. Cancer. 118:2431–2442. 2012. View Article : Google Scholar : PubMed/NCBI
|