1
|
Bondy ML, Scheurer ME, Malmer B, et al:
Brain tumor epidemiology: consensus from the Brain Tumor
Epidemiology Consortium. Cancer. 113:1953–1968. 2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Yuan X, Curtin J, Xiong Y, et al:
Isolation of cancer stem cells from adult glioblastoma multiforme.
Oncogene. 23:9392–9400. 2004. View Article : Google Scholar : PubMed/NCBI
|
3
|
Galli R, Binda E, Orfanelli U, et al:
Isolation and characterization of tumorigenic, stem-like neural
precursors from human glioblastoma. Cancer Res. 64:7011–7021. 2004.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Singh SK, Hawkins C, Clarke ID, et al:
Identification of human brain tumour initiating cells. Nature.
432:396–401. 2004. View Article : Google Scholar : PubMed/NCBI
|
5
|
Hemmati HD, Nakano I, Lazareff JA, et al:
Cancerous stem cells can arise from pediatric brain tumors. Proc
Natl Acad Sci USA. 100:15178–15183. 2003. View Article : Google Scholar : PubMed/NCBI
|
6
|
Schöler H, Ruppert S, Suzuki N, et al: New
type of POU domain in germ line-specific protein Oct-4. Nature.
344:435–439. 1990.PubMed/NCBI
|
7
|
Pesce M and Schöler HR: Oct-4: gatekeeper
in the beginnings of mammalian development. Stem Cells. 19:271–278.
2001. View Article : Google Scholar : PubMed/NCBI
|
8
|
Takeda J, Seino S and Bell GT: Human Oct3
gene family: cDNA sequences, alternative splicing, gene
organization, chromosomal location, and expression at low levels in
adult tissues. Nucleic Acids Res. 20:4613–4620. 1992. View Article : Google Scholar : PubMed/NCBI
|
9
|
Babaie Y, Herwig R, Greber B, et al:
Analysis of Oct4-dependent transcriptional networks regulating
self-renewal and pluripotency in human embryonic stem cells. Stem
Cells. 25:500–510. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Webster JD, Yuzbasiyan-Gurkan V, Trosko
JE, et al: Expression of the embryonic transcription factor Oct4 in
canine neoplasms: a potential marker for stem cell subpopulations
in neoplasia. Vet Pathol. 44:893–900. 2007. View Article : Google Scholar : PubMed/NCBI
|
11
|
Chiou SH, Yu CC, Huang CY, et al: Positive
correlations of Oct-4 and Nanog in oral cancer stem-like cells and
high-grade oral squamous cell carcinoma. Clin Cancer Res.
14:4085–4095. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Du Z, Jia D, Liu S, et al: Oct4 is
expressed in human gliomas and promotes colony formation in glioma
cells. Glia. 57:724–733. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Holmberg J, He X, Peredo I, et al:
Activation of neural and pluripotent stem cell signatures
correlates with increased malignancy in human glioma. PloS One.
6:e184542011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Ben-Porath I, Thomson MW, Carey VJ, et al:
An embryonic stem cell-like gene expression signature in poorly
differentiated aggressive human tumors. Nat Genet. 40:499–507.
2008. View
Article : Google Scholar : PubMed/NCBI
|
15
|
Ellis L, Atadja PW and Johnstone RW:
Epigenetics in cancer: targeting chromatin modifications. Mol
Cancer Ther. 8:1409–1420. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Baylin SB and Herman JG: DNA
hypermethylation in tumorigenesis: epigenetics joins genetics.
Trends Genet. 16:168–174. 2000. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ehrich M, Turner J, Gibbs P, et al:
Cytosine methylation profiling of cancer cell lines. Proc Natl Acad
Sci USA. 105:4844–4849. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Jones PA: Epigenetics in carcinogenesis
and cancer prevention. Ann NY Acad Sci. 983:213–219. 2003.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Feinberg AP: Cancer epigenetics takes
center stage. Proc Natl Acad Sci USA. 98:392–394. 2001. View Article : Google Scholar : PubMed/NCBI
|
20
|
Nagarajan RP and Costello JF: Molecular
epigenetics and genetics in neuro-oncology. Neurotherapeutics.
6:436–446. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Shi G and Jin Y: Role of Oct4 in
maintaining and regaining stem cell pluripotency. Stem Cell Res
Ther. 1:392010. View
Article : Google Scholar : PubMed/NCBI
|
22
|
Feldman N, Gerson A, Fang J, et al:
G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during
early embryogenesis. Nat Cell Biol. 8:188–194. 2006. View Article : Google Scholar : PubMed/NCBI
|
23
|
Deb-Rinker P, Ly D, Jezierski A, et al:
Sequential DNA methylation of the Nanog and Oct-4 upstream regions
in human NT2 cells during neuronal differentiation. J Biol Chem.
280:6257–6260. 2005. View Article : Google Scholar : PubMed/NCBI
|
24
|
Gidekel S and Bergman Y: A unique
developmental pattern of Oct-3/4 DNA methylation is controlled by a
cis-demodification element. J Biol Chem. 277:34521–34530. 2002.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Hattori N, Nishino K, Ko YG, et al:
Epigenetic control of mouse Oct-4 gene expression in embryonic stem
cells and trophoblast stem cells. J Biol Chem. 279:17063–17069.
2004. View Article : Google Scholar : PubMed/NCBI
|
26
|
Xue WC, Chan KY, Feng HC, et al: Promoter
hypermethylation of multiple genes in hydatidiform mole and
choriocarcinoma. J Mol Diagn. 6:326–334. 2004. View Article : Google Scholar : PubMed/NCBI
|
27
|
Liao X, Siu MK, Chan KY, et al:
Hypermethylation of RAS effector related genes and DNA
methyltransferase 1 expression in endometrial carcinogenesis. Int J
Cancer. 123:296–302. 2008. View Article : Google Scholar : PubMed/NCBI
|
28
|
Nordhoff V, Hübner K, Bauer A, et al:
Comparative analysis of human, bovine, and murine Oct-4 upstream
promoter sequences. Mamm Genome. 12:309–317. 2001. View Article : Google Scholar : PubMed/NCBI
|
29
|
Singh SK, Clarke ID, Terasaki M, et al:
Identification of a cancer stem cell in human brain tumors. Cancer
Res. 63:5821–5828. 2003.PubMed/NCBI
|
30
|
Singh SK, Clarke ID, Hide T and Dirks PB:
Cancer stem cells in nervous system tumors. Oncogene. 23:7267–7273.
2004. View Article : Google Scholar : PubMed/NCBI
|
31
|
Sathomsumetee S, Reardon DA, Desjardins A,
et al: Molecularly targeted therapy for malignant glioma. Cancer.
110:13–24. 2007. View Article : Google Scholar
|
32
|
Gidekel S, Pizov G, Bergman Y and Pikarsky
E: Oct-3/4 is a dose-dependent oncogenic fate determinant. Cancer
Cell. 4:361–370. 2003. View Article : Google Scholar : PubMed/NCBI
|
33
|
Yeom YI, Fuhrmann G, Ovitt CE, et al:
Germline regulatory element of Oct-4 specific for the totipotent
cycle of embryonal cells. Development. 122:881–894. 1996.PubMed/NCBI
|
34
|
Ben-Shushan E, Pikarsky E, Klar A and
Bergman Y: Extinction of Oct-3/4 gene expression in embryonal
carcinoma x fibroblast somatic cell hybrids is accompanied by
changes in the methylation status, chromatin structure, and
transcriptional activity of the Oct-3/4 upstream region. Mol Cell
Biol. 13:891–901. 1993.
|
35
|
Simonsson S and Gurdon J: DNA
demethylation is necessary for the epigenetic reprogramming of
somatic cell nuclei. Nat Cell Biol. 6:984–990. 2004. View Article : Google Scholar : PubMed/NCBI
|
36
|
Tsuji-Takayama K, Inoue T, Ijiri Y, et al:
Demethylating agent, 5-azacytidine, reverses differentiation of
embryonic stem cells. Biochem Biophys Res Commun. 323:86–90. 2004.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Cantz T, Key G, Bleidissel M, et al:
Absence of OCT4 expression in somatic tumor cell lines. Stem Cells.
26:692–697. 2008. View Article : Google Scholar : PubMed/NCBI
|
38
|
Zhang HJ, Siu MK, Wong ES, et al: Oct4 is
epigenetically regulated by methylation in normal placenta and
gestational trophoblastic disease. Placenta. 29:549–554. 2008.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Hoffmann MJ, Müller M, Engers R and Schulz
WA: Epigenetic control of CTCFL/BORIS and OCT4 expression in
urogenital malignancies. Biochem Pharmacol. 72:1577–1588. 2006.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Ehrlich M: DNA methylation in cancer: too
much, but also too little. Oncogene. 21:5400–5413. 2002. View Article : Google Scholar : PubMed/NCBI
|
41
|
Fanelli M, Caprodossi S, Ricci-Vitiani L,
et al: Loss of pericentromeric DNA methylation pattern in human
glioblastoma is associated with altered DNA methyltransferases
expression and involves the stem cell compartment. Oncogene.
27:358–365. 2008. View Article : Google Scholar : PubMed/NCBI
|
42
|
Cadieux B, Ching TT, VandenBerg SR and
Costello JF: Genome-wide hypomethylation in human glioblastomas
associated with specific copy number alteration,
methylenetetrahydrofolate reductase allele status, and increased
proliferation. Cancer Res. 66:8469–8476. 2006. View Article : Google Scholar
|