1
|
Shah C, Grills IS, Kestin LL, McGrath S,
Ye H, Martin SK and Yan D: Intrafraction variation of mean tumor
position during image-guided hypofractionated stereotactic body
radiotherapy for lung cancer. Int J Radiat Oncol Biol Phys.
82:1636–1641. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Lagadec C, Vlashi E, Della Donna L, Meng
Y, Dekmezian C, Kim K and Pajonk F: Survival and self-renewing
capacity of breast cancer initiating cells during fractionated
radiation treatment. Breast Cancer Res. 12:R132010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Jamal M, Rath BH, Williams ES, Camphausen
K and Tofilon PJ: Microenvironmental regulation of glioblastoma
radioresponse. Clin Cancer Res. 16:6049–6059. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ayouaz A, Raynaud C, Heride C, Revaud D
and Sabatier L: Telomeres: hallmarks of radiosensitivity.
Biochimie. 90:60–72. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Dumont F, Altmeyer A and Bischoff P:
Radiosensitising agents for the radiotherapy of cancer: novel
molecularly targeted approaches. Expert Opin Ther Pat. 19:775–799.
2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Bondza-Kibangou P, Millot C, El Khoury V
and Millot JM: Antioxidants and doxorubicin supplementation to
modulate CD14 expression and oxidative stress induced by vitamin
D3 and seocalcitol in HL60 cells. Oncol Rep.
18:1513–1519. 2007.PubMed/NCBI
|
7
|
Pani G, Galeotti T and Chiarugi P:
Metastasis: cancer cell’s escape from oxidative stress. Cancer
Metastasis Rev. 29:351–378. 2010.
|
8
|
Forkink M, Smeitink JA, Brock R, Willems
PH and Koopman WJ: Detection and manipulation of mitochondrial
reactive oxygen species in mammalian cells. Biochim Biophys Acta.
1797:1034–1044. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Forman HJ, Zhang H and Rinna A:
Glutathione: overview of its protective roles, measurement, and
biosynthesis. Mol Aspects Med. 30:1–12. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Circu ML and Aw TY: Glutathione and
apoptosis. Free Radic Res. 42:689–706. 2008. View Article : Google Scholar
|
11
|
Wu G, Fang YZ, Yang S, Lupton JR and
Turner ND: Glutathione metabolism and its implications for health.
J Nutr. 134:489–492. 2004.PubMed/NCBI
|
12
|
Botta D, White CC, Vliet-Gregg P, et al:
Modulating GSH synthesis using glutamate cysteine ligase transgenic
and gene-targeted mice. Drug Metab Rev. 40:465–477. 2008.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhang W, Trachootham D, Liu J, et al:
Stromal control of cystine metabolism promotes cancer cell survival
in chronic lymphocytic leukaemia. Nat Cell Biol. 14:276–286. 2012.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Lewis-Wambi JS, Kim HR, Wambi C, Patel R,
Pyle JR, Klein-Szanto AJ and Jordan VC: Buthionine sulfoximine
sensitizes antihormone-resistant human breast cancer cells to
estrogen-induced apoptosis. Breast Cancer Res. 10:R1042008.
View Article : Google Scholar
|
15
|
Ogunrinu TA and Sontheimer H: Hypoxia
increases the dependence of glioma cells on glutathione. J Biol
Chem. 285:37716–37724. 2010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ruiz-Gómez MJ, Souviron A,
Martínez-Morillo M and Gil L: P-glycoprotein, glutathione and
glutathione S-transferase increase in a colon carcinoma cell line
by colchicine. J Physiol Biochem. 56:307–312. 2000.PubMed/NCBI
|
17
|
Inci E, Civelek S, Seven A, Inci F, Korkut
N and Burçax G: Laryngeal cancer: in relation to oxidative stress.
Tohoku J Exp Med. 200:17–23. 2003. View Article : Google Scholar : PubMed/NCBI
|
18
|
Honda T, Coppola S, Ghibelli L, et al: GSH
depletion enhances adenoviral bax-induced apoptosis in lung cancer
cells. Cancer Gene Ther. 11:249–255. 2004. View Article : Google Scholar : PubMed/NCBI
|
19
|
Simons AL, Parsons AD, Foster KA, Orcutt
KP, Fath MA and Spitz DR: Inhibition of glutathione and thioredoxin
metabolism enhances sensitivity to perifosine in head and neck
cancer cells. J Oncol. 2009:5195632009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Boivin A, Hanot M, Malesys C, Maalouf M,
Rousson R, Rodriguez-Lafrasse C and Ardail D: Transient alteration
of cellular redox buffering before irradiation triggers apoptosis
in head and neck carcinoma stem and non-stem cells. PLoS One.
6:e145582011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Pollier J and Goossens A: Oleanolic acid.
Phytochemistry. 77:10–15. 2012. View Article : Google Scholar
|
22
|
Yang EJ, Lee W, Ku SK, Song KS and Bae JS:
Anti-inflammatory activities of oleanolic acid on HMGB1 activated
HUVECs. Food Chem Toxicol. 50:1288–1294. 2012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Reisman SA, Aleksunes LM and Klaassen CD:
Oleanolic acid activates Nrf2 and protects from acetaminophen
hepatotoxicity via Nrf2-dependent and Nrf2-independent processes.
Biochem Pharmacol. 77:1273–1282. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Yim TK, Wu WK, Pak WF and Ko KM:
Hepatoprotective action of an oleanolic acid-enriched extract of
Ligustrum lucidum fruits is mediated through an enhancement
on hepatic glutathione regeneration capacity in mice. Phytother
Res. 15:589–592. 2001.PubMed/NCBI
|
25
|
Hsu HY, Yang JJ and Lin CC: Effects of
oleanolic acid and ursolic acid on inhibiting tumor growth and
enhancing the recovery of hematopoietic system postirradiation in
mice. Cancer Lett. 111:7–13. 1997. View Article : Google Scholar : PubMed/NCBI
|
26
|
Fujiwara Y, Komohara Y, Kudo R, Tsurushima
K, Ohnishi K, Ikeda T and Takeya M: Oleanolic acid inhibits
macrophage differentiation into the M2 phenotype and glioblastoma
cell proliferation by suppressing the activation of STAT3. Oncol
Rep. 26:1533–1537. 2011.PubMed/NCBI
|
27
|
Wei J, Liu H, Liu M, et al: Oleanolic acid
potentiates the antitumor activity of 5-fluorouracil in pancreatic
cancer cells. Oncol Rep. 28:1339–1345. 2012.PubMed/NCBI
|
28
|
Bishayee A, Ahmed S, Brankov N and Perloff
M: Triterpenoids as potential agents for the chemoprevention and
therapy of breast cancer. Front Biosci. 16:980–996. 2011.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Yamai H, Sawada N, Yoshida T, et al:
Triterpenes augment the inhibitory effects of anticancer drugs on
growth of human esophageal carcinoma cells in vitro and suppress
experimental metastasis in vivo. Int J Cancer. 125:952–960. 2009.
View Article : Google Scholar
|
30
|
White CC, Viernes H, Krejsa CM, Botta D
and Kavanagh TJ: Fluorescence-based microtiter plate assay for
glutamate-cysteine ligase activity. Anal Biochem. 318:175–180.
2003. View Article : Google Scholar : PubMed/NCBI
|
31
|
Frosina G: DNA repair and resistance of
gliomas to chemotherapy and radiotherapy. Mol Cancer Res.
7:989–999. 2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Chang JY and Cox JD: Improving radiation
conformality in the treatment of non-small cell lung cancer. Semin
Radiat Oncol. 20:171–177. 2010. View Article : Google Scholar : PubMed/NCBI
|
33
|
Kim M, Lee J, Ha B, Lee R, Lee KJ and Suh
HS: Factors predicting radiation pneumonitis in locally advanced
non-small cell lung cancer. Radiat Oncol J. 29:181–190. 2011.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Zerp SF, Stoter R, Kuipers G, et al:
AT-101, a small molecule inhibitor of anti-apoptotic Bcl-2 family
members, activates the SAPK/JNK pathway and enhances
radiation-induced apoptosis. Radiat Oncol. 4:472009. View Article : Google Scholar : PubMed/NCBI
|
35
|
Rao SK, Rao PS and Rao BN: Preliminary
investigation of the radiosensitizing activity of guduchi
(Tinospora cordifolia) in tumor-bearing mice. Phytother Res.
22:1482–1489. 2008. View
Article : Google Scholar : PubMed/NCBI
|
36
|
Dai Y, DeSano JT, Meng Y, Ji Q, Ljungman
M, Lawrence TS and Xu L: Celastrol potentiates radiotherapy by
impairment of DNA damage processing in human prostate cancer. Int J
Radiat Oncol Biol Phys. 74:1217–1225. 2009. View Article : Google Scholar : PubMed/NCBI
|
37
|
Tsai SJ and Yin MC: Anti-oxidative,
anti-glycative and anti-apoptotic effects of oleanolic acid in
brain of mice treated by D-galactose. Eur J Pharmacol. 689:81–88.
2012. View Article : Google Scholar : PubMed/NCBI
|
38
|
Koh SJ, Tak JK, Kim ST, Nam WS, Kim SY,
Park KM and Park JW: Sensitization of ionizing radiation-induced
apoptosis by ursolic acid. Free Radic Res. 46:339–345. 2012.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Eder-Czembirek C, Erovic BM, Czembirek C,
Brunner M, Selzer E, Pötter R and Thurnher D: Betulinic acid a
radiosensitizer in head and neck squamous cell carcinoma cell
lines. Strahlenther Onkol. 186:143–148. 2010. View Article : Google Scholar : PubMed/NCBI
|
40
|
Selzer E, Pimentel E, Wacheck V, Schlegel
W, Pehamberger H, Jansen B and Kodym R: Effects of betulinic acid
alone and in combination with irradiation in human melanoma cells.
J Invest Dermatol. 114:935–940. 2000. View Article : Google Scholar : PubMed/NCBI
|
41
|
Yang JC, Lu MC, Lee CL, Chen GY, Lin YY,
Chang FR and Wu YC: Selective targeting of breast cancer cells
through ROS-mediated mechanisms potentiates the lethality of
paclitaxel by a novel diterpene, gelomulide K. Free Radic Biol Med.
51:641–657. 2011. View Article : Google Scholar : PubMed/NCBI
|
42
|
Karthikeyan S, Kanimozhi G, Prasad NR and
Mahalakshmi R: Radiosensitizing effect of ferulic acid on human
cervical carcinoma cells in vitro. Toxicol In Vitro. 25:1366–1375.
2011. View Article : Google Scholar : PubMed/NCBI
|
43
|
Benassi B, Zupi G and Biroccio A:
Gamma-glutamylcysteine synthetase mediates the c-Myc-dependent
response to antineoplastic agents in melanoma cells. Mol Pharmacol.
72:1015–1023. 2007. View Article : Google Scholar : PubMed/NCBI
|
44
|
Oliveira NG, Castro M, Rodrigues AS, et
al: Wortmannin enhances the induction of micronuclei by low and
high LET radiation. Mutagenesis. 18:37–44. 2003. View Article : Google Scholar
|
45
|
Sedelnikova OA, Nakamura A, Kovalchuk O,
et al: DNA double-strand breaks form in bystander cells after
microbeam irradiation of three-dimensional human tissue models.
Cancer Res. 67:4295–4302. 2007. View Article : Google Scholar
|
46
|
Kashino G, Prise KM, Suzuki K, et al:
Effective suppression of bystander effects by DMSO treatment of
irradiated CHO cells. J Radiat Res. 48:327–333. 2007. View Article : Google Scholar : PubMed/NCBI
|
47
|
Shao C, Furusawa Y, Kobayashi Y, Funayama
T and Wada S: Bystander effect induced by counted high-LET
particles in confluent human fibroblasts: a mechanistic study.
FASEB J. 17:1422–1427. 2003. View Article : Google Scholar : PubMed/NCBI
|
48
|
Thierens H and Vral A: The micronucleus
assay in radiation accidents. Ann Ist Super Sanita. 45:260–264.
2009.PubMed/NCBI
|
49
|
McConnachie LA, Mohar I, Hudson FN, et al:
Glutamate cysteine ligase modifier subunit deficiency and gender as
determinants of acetaminophen-induced hepatotoxicity in mice.
Toxicol Sci. 99:628–636. 2007. View Article : Google Scholar : PubMed/NCBI
|
50
|
Bai X, Qiu A, Guan J and Shi Z:
Antioxidant and protective effect of an oleanolic acid-enriched
extract of A. deliciosa root on carbon tetrachloride induced
rat liver injury. Asia Pac J Clin Nutr. 16(Suppl 1): 169–173.
2007.PubMed/NCBI
|
51
|
Abdel-Zaher AO, Abdel-Rahman MM, Hafez MM
and Omran FM: Role of nitric oxide and reduced glutathione in the
protective effects of aminoguanidine, gadolinium chloride and
oleanolic acid against acetaminophen-induced hepatic and renal
damage. Toxicology. 234:124–134. 2007. View Article : Google Scholar
|
52
|
Petronelli A, Saulle E, Pasquini L, et al:
High sensitivity of ovarian cancer cells to the synthetic
triterpenoid CDDO-imidazolide. Cancer Lett. 282:214–228. 2009.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Ikeda T, Sporn M, Honda T, Gribble GW and
Kufe D: The novel triterpenoid CDDO and its derivatives induce
apoptosis by disruption of intracellular redox balance. Cancer Res.
63:5551–5558. 2003.PubMed/NCBI
|
54
|
Haddad JJ, Olver RE and Land SC:
Antioxidant/pro-oxidant equilibrium regulates HIF-1alpha and
NF-kappa B redox sensitivity. Evidence for inhibition by
glutathione oxidation in alveolar epithelial cells. J Biol Chem.
275:21130–21139. 2000. View Article : Google Scholar
|