1
|
Travis WD; IASLC Staging Committee.
Reporting lung cancer pathology specimens. Impact of the
anticipated 7th edition TNM classification based on recommendations
of the IASLC Staging Committee. Histopathology. 54:3–11. 2009.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Jemal A, Siegel R, Ward E, et al: Cancer
statistics: 2007. CA Cancer J Clin. 57:43–66. 2007. View Article : Google Scholar
|
3
|
Vivanco I and Sawyers CL: The
phosphatidyloinositol 3-kinase AKT pathway in human cancer. Nat Rev
Cancer. 2:489–501. 2002. View
Article : Google Scholar : PubMed/NCBI
|
4
|
Sarbassov DD, Ali SM and Sabatini DM:
Growing roles for the mTOR pathway. Curr Opin Cell Biol.
17:596–603. 2005. View Article : Google Scholar : PubMed/NCBI
|
5
|
Sarbassov DD, Ali SM, Kim DH, et al:
Rictor, a novel binding pattern of mTOR, defines a
rapamycin-insensitive and raptor-independent pathway that regulates
the cytoskeleton. Curr Biol. 14:1296–1302. 2004. View Article : Google Scholar : PubMed/NCBI
|
6
|
Hay N and Sonenberg N: Upstream and
downstream of mTOR. Genes Dev. 18:1926–1945. 2004. View Article : Google Scholar
|
7
|
Gingras AC, Gypi SP, Raught B, et al:
Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism.
Genes Dev. 13:1422–1437. 1999. View Article : Google Scholar : PubMed/NCBI
|
8
|
Bjornsti MA and Houghton PJ: The TOR
pathway: a target for cancer therapy. Nat Rev Cancer. 4:335–348.
2004. View Article : Google Scholar : PubMed/NCBI
|
9
|
Yu J, Zhang Y, McIlroy J, et al:
Regulation of the p85/p110 phosphstidyloinositol 3′-kinase:
stabilization and inhibition of the p110alpha catalytic subunit by
the p85 regulatory subunit. Mol Cell Biol. 18:1379–1387. 1998.
|
10
|
Miled N, Yan Y, Hon WC, et al: Mechanism
of two classes of cancer mutations in the phosphoinositide 3-kinase
catalytic subunit. Science. 317:239–242. 2007. View Article : Google Scholar : PubMed/NCBI
|
11
|
Yamamoto H, Hisayuki S, Masaharu N, et al:
PI3KCA mutations and copy number gains in human lung cancer. Cancer
Res. 68:693–621. 2008. View Article : Google Scholar
|
12
|
Scrima M, De Marco C, Fabiani F, et al:
Signaling networks associated with AKT activation in non-small cell
lung cancer (NSCLC): new insights on the role of
phosphatidyl-inositol-3 kinase. PLoS One. 7:e304272012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Marti A and Felip E: PI3K pathway in
NSCLC. Front Oncol. 1:552012.
|
14
|
Stambolic V, Suzuki A, de la Pompa JL, et
al: Negative regulation of PKB/Akt-dependent cell survival by the
tumor suppressor PTEN. Cell. 95:29–39. 1998. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wangpaichitr M, Wu C, You M, et al:
Inhibition of mTOR restores cisplatin sensitivity through
down-regulation of growth and anti-apoptotic proteins. Eur J
Pharmacol. 591:124–127. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Balsara BR, Pei J, Mitsuuchi Y, et al:
Frequent activation of AKT in non-small cell lung carcinomas and
preneoplastic bronchial lesions. Carcinogenesis. 25:2053–2059.
2004. View Article : Google Scholar : PubMed/NCBI
|
17
|
Okudela K, Suzuki M, Kageyama S, et al:
PIK3CA mutation and amplification in human lung cancer. Pathol Int.
57:664–671. 2007. View Article : Google Scholar : PubMed/NCBI
|
18
|
Yoshizawa A, Fukuoka J, Shimizu S, et al:
Overexpression of phospho-eIF4E is associated with survival through
AKT pathway in non-small cell lung cancer. Clin Cancer Res.
16:240–248. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Anagnostou VK, Bepler G, Syrigos KN, et
al: High expression of mammalian target of rapamycin is associated
with better outcome for patients with early stage lung
adenocarcinoma. Clin Cancer Res. 15:4157–4164. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Tang JM, He QY, Guo RX, et al:
Phosphorylated AKT overexpression and loss of PTEN expression in
non-small cell lung cancer confers poor prognosis. Lung Cancer.
51:181–191. 2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Liu D, Huang Y, Chen B, et al: Activation
of mammalian target of rapamycin pathway confers adverse outcome in
nonsmall cell lung carcinoma. Cancer. 117:3763–3673. 2011.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Dobashi Y, Suzuki S, Matsubara H, et al:
Critical and diverse involvement of Akt/mammalian target of
rapamycin signaling in human lung carcinomas. Cancer. 115:107–118.
2009. View Article : Google Scholar : PubMed/NCBI
|
23
|
McDonald JM, Pelloski CE, Ledoux A, et al:
Elevated phospho-S6 expression is associated with metastasis in
adenocarcinoma of the lung. Clin Cancer Res. 14:7832–7837. 2008.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Khoury T, Alrawi S, Ramnath N, et al:
Eukaryotic initiation factor-4E and cyclin D1 expression associated
with patient survival in lung cancer. Clin Lung Cancer. 10:58–66.
2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wang R, Genng J, Wang JH, et al:
Overexpression of eukaryotic initiation factor 4E (eIF4E) ad its
clinical significance in lung adenocarcinoma. Lung Cancer.
66:237–244. 2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Oh MH, Lee HJ, Yoo SB, et al:
Clinicopathological correlations of mTOR and pAkt expression in
non-small cell lung cancer. Virchows Arch. 460:601–609. 2012.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Zito CR, Jilaveanu LB, Anagnostou V, et
al: Multi-level targeting of the phosphatidyloinositol-3-kinase
pathway in non-small cell lung cancer cells. PLoS One.
7:e313312012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Gately K, Al-Alao B, Dhillon T, et al:
Overexpression of the mammalian target of rapamycin (mTOR) and
angioinvasion are poor prognostic factors in early stage NSCLC: a
verification study. Lung Cancer. 75:217–222. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Dhillon T, Mauri FA, Belezza G, et al:
Overexpression of the mammalian target of rapamycin: a novel
biomarker for poor survival in resected early stage non-small cell
lung cancer. J Thorac Oncol. 5:314–319. 2010. View Article : Google Scholar : PubMed/NCBI
|
30
|
Lim WT, Zhang WH, Miller CR, et al: PTEN
and phosphorylated AKT expression and prognosis in early- and
late-stage non-small cell lung cancer. Oncol Rep. 17:853–857.
2007.PubMed/NCBI
|
31
|
Shi Y, Chen L, Li J, et al: Prognostic and
predictive values of pERK1/2 and pAkt-1 expression in non-small
cell lung cancer patients treated with adjuvant chemotherapy.
Tumour Biol. 32:381–389. 2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
David O, Jett J, LeBeau H, et al:
Phospho-Akt overexpression in non-small cell lung cancer confers
significant stage-independent survival disadvantage. Clin Cancer
Res. 10:6865–6871. 2004. View Article : Google Scholar
|
33
|
Korkolopoulou P, Levidou G, Trigka EA, et
al: A comprehensive immunohistochemical and molecular approach to
the PI3K/AKT/mTOR (phosphoinositide 3-kinase/v-akt murine thymoma
viral oncogene/mammalian target of rapamycin) pathway in bladder
urothelial carcinoma. BJU Int. E1237–E1248. 2012. View Article : Google Scholar
|
34
|
Levidou G, Saetta AA, Gigelou F, et al:
ERK/pERK expression and B-raf mutations in colon adenocarcinomas:
correlation with clinicopathological characteristics. World J Surg
Oncol. 10:472012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Rojo F, Najera L, Lirola J, et al:
4E-binding protein 1, a cell signaling hallmark in breast cancer
that correlates with pathologic grade and prognosis. Clin Cancer
Res. 13:81–89. 2007. View Article : Google Scholar : PubMed/NCBI
|
36
|
Fujisaka Y, Yamada Y, Yamamoto N, et al: A
phase 1 clinical study of temsirolimus (CCI-779) in Japanese
patients with advanced solid tumors. Jpn J Clin Oncol. 40:732–738.
2010. View Article : Google Scholar : PubMed/NCBI
|
37
|
Pal SK, Figlin RA and Reckamp KL: The role
of targeting mammalian target of rapamycin in lung cancer. Clin
Lung Cancer. 9:340–345. 2008. View Article : Google Scholar : PubMed/NCBI
|
38
|
An SJ, Chen ZH, Su J, et al:
Identification of enriched driver gene alterations in subgroups of
non-small cell lung cancer patients based on histology and smoking
status. PLoS One. 7:e401092012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Thomas G: The S6 kinase signaling pathway
in the control of development and growth. Biol Res. 35:305–313.
2002. View Article : Google Scholar : PubMed/NCBI
|
40
|
Riemenschneider MJ, Betensky RA, Pasedag
SM, et al: AKT activation in human glioblastomas enhances
proliferation via TSC1 and S6 kinase signaling. Cancer Res.
66:5618–5623. 2006. View Article : Google Scholar : PubMed/NCBI
|
41
|
Han S, Khuri FR and Roman J: Fibronectin
stimulates non-small cell lung cancinoma cell growth through
activation of Akt/mammalian target of rapamycin/S6 kinase and
inactivation of LKB1/AMP-activated protein kinase signal pathways.
Cancer Res. 66:315–323. 2006. View Article : Google Scholar : PubMed/NCBI
|
42
|
Johnson SM, Gulhati P, Rampy BA, et al:
Novel expression patterns of PI3K/Akt/mTOR signaling pathway
components in colorectal cancer. J Am Coll Surg. 210:767–778. 2010.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Bose S, Chandran S, Mirocha JM and Bose N:
The Akt pathway in human breast cancer: a tissue-array-based
analysis. Mod Pathol. 19:238–245. 2009. View Article : Google Scholar : PubMed/NCBI
|
44
|
Pantuck AJ, Seligson DB, Klatte T, et al:
Prognostic relevance of the mTOR pathway in renal cell carcinoma:
implications for molecular patient selection for targeted therapy.
Cancer. 109:2257–2267. 2007. View Article : Google Scholar : PubMed/NCBI
|
45
|
Sun CH, Chang YH and Pan CC: Activation of
the PI3K/Akt/mTOR pathway correlates with tumour progression and
reduced survival in patients with urothelial carcinoma of the
urinary bladder. Histopathology. 58:1054–1063. 2011. View Article : Google Scholar : PubMed/NCBI
|
46
|
Liliental J, Moon SY, Lesche R, et al:
Genetic deletion of the Pten tumor suppressor gene promotes cell
motility by activation of Rac1 and Cdc42 GTPases. Curr Biol.
10:401–404. 2000. View Article : Google Scholar : PubMed/NCBI
|
47
|
Dai B, Kong YY, Ye DW, et al: Activation
of the mammalian target of rapamycin signaling pathway in prostate
cancer and its association with patient clinicopathological
characteristics. BJU Int. 104:1009–1016. 2009. View Article : Google Scholar : PubMed/NCBI
|
48
|
Seki N, Takasu T, Mandai K, et al:
Expression of eukaryotic initiation factor 4E in atypical
adenomatous hyperplasia and adenocarcinoma of the human peripheral
lung. Clic Cancer Res. 8:3046–3053. 2002.PubMed/NCBI
|
49
|
Rosenwald IB, Hutzler MJ, Wang S, et al:
Expression of eukaryotic translation initiation factors 4E and
2alpha is increased frequently in bronchioalveolar but not in
squamous cell carcinomas of the lung. Cancer. 92:2164–2171. 2001.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Sun SY, Rosenberg LM, Wang X, et al:
Activation of Akt and eIF4E survival pathways by rapamycin-mediated
mammalian target of rapamycin inhibition. Cancer Res. 65:7052–7058.
2005. View Article : Google Scholar : PubMed/NCBI
|
51
|
Armengol G, Rojo F, Castellvi J, et al:
4E-binding protein 1: a key molecular ‘funnel factor’ in human
cancer with clinical implications. Cancer Res. 67:7551–7555.
2007.
|
52
|
Dumstorf CA, Konicek BW, McNulty AM, et
al: Modulation of 4E-BP1 function as a critical determinant of
enzastaurin-induced apoptosis. Mol Cancer Ther. 9:3158–3163. 2010.
View Article : Google Scholar : PubMed/NCBI
|