1
|
Mehlen P and Puisieux A: Metastasis: a
question of life or death. Nat Rev Cancer. 6:449–458. 2006.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Steeg PS: Metastasis suppressors alter the
signal transduction of cancer cells. Nat Rev Cancer. 3:55–63. 2003.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Segura MF, Hanniford D, Menendez S, et al:
Aberrant miR-182 expression promotes melanoma metastasis by
repressing FOXO3 and microphthalmia-associated transcription
factor. Proc Natl Acad Sci USA. 106:1814–1819. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Egeblad M and Werb Z: New functions for
the matrix metalloproteinases in cancer progression. Nat Rev
Cancer. 2:161–174. 2002. View
Article : Google Scholar : PubMed/NCBI
|
5
|
Yana I and Seiki M: MT-MMPs play pivotal
roles in cancer dissemination. Clin Exp Metastasis. 19:209–215.
2002. View Article : Google Scholar : PubMed/NCBI
|
6
|
Genís L, Gálvez BG, Gonzalo P and Arroyo
AG: MT1-MMP: universal or particular player in angiogenesis? Cancer
Metastasis Rev. 25:77–86. 2006.PubMed/NCBI
|
7
|
Plaisier M, Kapiteijn K, Koolwijk P, et
al: Involvement of membrane-type matrix metalloproteinases
(MT-MMPs) in capillary tube formation by human endometrial
microvascular endothelial cells: role of MT3-MMP. J Clin Endocrinol
Metab. 89:5828–5836. 2004. View Article : Google Scholar : PubMed/NCBI
|
8
|
Sounni NE and Noel A: Membrane type-matrix
metalloproteinases and tumor progression. Biochimie. 87:329–342.
2005. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ottaviano AJ, Sun L, Ananthanarayanan V
and Munshi HG: Extracellular matrix-mediated membrane-type 1 matrix
metalloproteinase expression in pancreatic ductal cells is
regulated by transforming growth factor-β1. Cancer Res.
66:7032–7040. 2006.PubMed/NCBI
|
10
|
Atkinson JM, Pennington CJ, Martin SW, et
al: Membrane type matrix metalloproteinases (MMPs) show
differential expression in non-small cell lung cancer (NSCLC)
compared to normal lung: correlation of MMP-14 mRNA expression and
proteolytic activity. Eur J Cancer. 43:1764–1771. 2007. View Article : Google Scholar
|
11
|
Laudański P, Swiatecka J, Kozłowski L, et
al: Increased serum level of membrane type 1-matrix
metalloproteinase (MT1-MMP/MMP-14) in patients with breast cancer.
Folia Histochem Cytobiol. 48:101–103. 2010.PubMed/NCBI
|
12
|
Crispi S, Calogero RA, Santini M, et al:
Global gene expression profiling of human pleural mesotheliomas:
identification of matrix metalloproteinase 14 (MMP-14) as potential
tumour target. PLoS One. 4:e70162009. View Article : Google Scholar
|
13
|
Zhang H, Liu M, Sun Y and Lu J: MMP-14 can
serve as a prognostic marker in patients with supraglottic cancer.
Eur Arch Otorhinolaryngol. 266:1427–1434. 2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Visse R and Nagase H: Matrix
metalloproteinases and tissue inhibitors of metalloproteinases:
structure, function, and biochemistry. Circ Res. 92:827–839. 2003.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Suojanen J, Salo T, Koivunen E, et al: A
novel and selective membrane type-1 matrix metalloproteinase
(MT1-MMP) inhibitor reduces cancer cell motility and tumor growth.
Cancer Biol Ther. 8:2362–2370. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Winter J, Jung S, Keller S, et al: Many
roads to maturity: microRNA biogenesis pathways and their
regulation. Nat Cell Biol. 11:228–234. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Eulalio A, Huntzinger E and Izaurralde E:
Getting to the root of miRNA-mediated gene silencing. Cell.
132:9–14. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Calin GA and Croce CM: MicroRNA signatures
in human cancers. Nat Rev Cancer. 6:857–866. 2006. View Article : Google Scholar : PubMed/NCBI
|
19
|
Gregory PA, Bert AG, Paterson EL, et al:
The miR-200 family and miR-205 regulate epithelial to mesenchymal
transition by targeting ZEB1 and SIP1. Nat Cell Biol. 10:593–601.
2008. View
Article : Google Scholar : PubMed/NCBI
|
20
|
Renthal NE, Chen CC, Williams KC, et al:
miR-200 family and targets, ZEB1 and ZEB2, modulate uterine
quiescence and contractility during pregnancy and labor. Proc Natl
Acad Sci USA. 107:20828–20833. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Burk U, Schubert J, Wellner U, et al: A
reciprocal repression between ZEB1 and members of the miR-200
family promotes EMT and invasion in cancer cells. EMBO Rep.
9:582–589. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Yan LX, Huang XF, Shao Q, et al: MicroRNA
miR-21 overexpression in human breast cancer is associated with
advanced clinical stage, lymph node metastasis and patient poor
prognosis. RNA. 14:2348–2360. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ma L, Teruya-Feldstein J and Weinberg RA:
Tumour invasion and metastasis initiated by microRNA-10b in breast
cancer. Nature. 449:682–688. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Gee HE, Camps C, Buffa FM, et al:
MicroRNA-10b and breast cancer metastasis. Nature. 455:E8–E9. 2008.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Liu C, Kelnar K, Liu B, et al: The
microRNA miR-34a inhibits prostate cancer stem cells and metastasis
by directly repressing CD44. Nat Med. 17:211–215. 2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ma L, Young J, Prabhala H, et al: miR-9, a
MYC/MYCN-activated microRNA, regulates E-cadherin and cancer
metastasis. Nat Cell Biol. 12:247–256. 2010.PubMed/NCBI
|
27
|
Xiao J, Luo X, Lin H, et al: MicroRNA
miR-133 represses HERG K+ channel expression
contributing to QT prolongation in diabetic hearts. J Biol Chem.
282:12363–12367. 2007.PubMed/NCBI
|
28
|
Kato Y, Miyaki S, Yokoyama S, et al:
Real-time functional imaging for monitoring miR-133 during myogenic
differentiation. Int J Biochem Cell Biol. 41:2225–2231. 2009.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Li Z, Hassan MQ, Volinia S, et al: A
microRNA signature for a BMP2-induced osteoblast lineage commitment
program. Proc Natl Acad Sci USA. 105:13906–13911. 2008. View Article : Google Scholar : PubMed/NCBI
|
30
|
Yoshino H, Chiyomaru T, Enokida H, et al:
The tumour-suppressive function of miR-1 and miR-133a targeting
TAGLN2 in bladder cancer. Br J Cancer. 104:808–818. 2011.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Shields MA, Dangi-Garimella S, Krantz SB,
et al: Pancreatic cancer cells respond to type I collagen by
inducing snail expression to promote membrane type 1 matrix
metalloproteinase-dependent collagen invasion. J Biol Chem.
286:10495–10504. 2011. View Article : Google Scholar
|
32
|
Gong YL, Xu GM, Huang WD and Chen LB:
Expression of matrix metalloproteinases and the tissue inhibitors
of metalloproteinases and their local invasiveness and metastasis
in Chinese human pancreatic cancer. J Surg Oncol. 73:95–99. 2000.
View Article : Google Scholar : PubMed/NCBI
|