1
|
Loehrer PJ and Einhorn LH: Drugs five
years later. Cisplatin Ann Intern Med. 100:704–713. 1984.PubMed/NCBI
|
2
|
WoŸniak K and Błasiak J: Recognition and
repair of DNA-cisplatin adducts. Acta Biochim Pol. 49:583–596.
2002.
|
3
|
Reedijk J: New clues for platinum
antitumor chemistry: kinetically controlled metal binding to DNA.
Proc Natl Acad Sci USA. 100:3611–3616. 2003. View Article : Google Scholar : PubMed/NCBI
|
4
|
Basu A and Krishnamurthy S: Cellular
responses to cisplatin-induced DNA damage. J Nucleic Acids.
2010:2013672010. View Article : Google Scholar
|
5
|
Liu D, Yang Y, Liu Q and Wang J:
Inhibition of autophagy by 3-MA potentiates cisplatin-induced
apoptosis in esophageal squamous cell carcinoma cells. Med Oncol.
28:105–111. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kang R, Wang ZH, Wang BQ, et al:
Inhibition of autophagy-potentiated chemosensitivity to cisplatin
in laryngeal cancer Hep-2 cells. Am J Otolaryngol. 33:678–684.
2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Xu Y, Yu H, Qin H, et al: Inhibition of
autophagy enhances cisplatin cytotoxicity through endoplasmic
reticulum stress in human cervical cancer cells. Cancer Lett.
314:232–243. 2012. View Article : Google Scholar
|
8
|
Kimura T, Takabatake Y, Takahashi A and
Isaka Y: Chloroquine in cancer therapy: a double-edged sword of
autophagy. Cancer Res. 73:3–7. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Elstrom RL, Andemariam B, Martin P, et al:
Bortezomib in combination with rituximab, dexamethasone,
ifosfamide, cisplatin and etoposide chemoimmunotherapy in patients
with relapsed and primary refractory diffuse large B-cell lymphoma.
Leuk Lymphoma. 53:1469–1473. 2012. View Article : Google Scholar
|
10
|
Kubicek GJ, Axelrod RS, Machtay M, et al:
Phase I trial using the proteasome inhibitor bortezomib and
concurrent chemoradiotherapy for head-and-neck malignancies. Int J
Radiat Oncol Biol Phys. 83:1192–1197. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ong PS, Wang XQ, Lin HS, Chan SY and Ho
PC: Synergistic effects of suberoylanilide hydroxamic acid combined
with cisplatin causing cell cycle arrest independent apoptosis in
platinum-resistant ovarian cancer cells. Int J Oncol. 40:1705–1713.
2012.
|
12
|
Jin KL, Park JY, Noh EJ, Hoe KL, Lee JH,
Kim JH and Nam JH: The effect of combined treatment with cisplatin
and histone deacetylase inhibitors on HeLa cells. J Gynecol Oncol.
21:262–268. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Mathew JT and Bio LL: Injectable ammonium
chloride used enterally for the treatment of persistent metabolic
alkalosis in three pediatric patients. J Pediatr Pharmacol Ther.
17:98–103. 2012.PubMed/NCBI
|
14
|
Kawai A, Uchiyama H, Takano S, Nakamura N
and Ohkuma S: Autophagosome-lysosome fusion depends on the pH in
acidic compartments in CHO cells. Autophagy. 3:154–157. 2007.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Yang YP, Liang ZQ, Gao B, Jia YL and Qin
ZH: Dynamic effects of autophagy on arsenic trioxide-induced death
of human leukemia cell line HL60 cells. Acta Pharmacol Sin.
29:123–134. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Yu C, Huang X, Xu Y, et al: Lysosome
dysfunction enhances oxidative stress-induced apoptosis through
ubiquitinated protein accumulation in Hela cells. Anat Rec
(Hoboken). 296:31–39. 2013. View
Article : Google Scholar
|
17
|
Safirstein R, Winston J, Goldstein M, Moel
D, Dikman S and Guttenplan J: Cisplatin nephrotoxicity. Am J Kidney
Dis. 8:356–367. 1986. View Article : Google Scholar
|
18
|
Choudhury D and Ahmed Z: Drug-associated
renal dysfunction and injury. Nat Clin Pract Nephrol. 2:80–91.
2006. View Article : Google Scholar : PubMed/NCBI
|
19
|
Alexander S, Swatson WS and Alexander H:
Pharmacogenetics of resistance to cisplatin and other anticancer
drugs and the role of sphingolipid metabolism. Methods Mol Biol.
983:185–204. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Sherman SE, Gibson D, Wang AH and Lippard
SJ: X-ray structure of the major adduct of the anticancer drug
cisplatin with DNA: cis-[Pt(NH3)2{d(pGpG)}].
Science. 230:412–417. 1985.
|
21
|
Chaney SG, Campbell SL, Bassett E and Wu
Y: Recognition and processing of cisplatin- and oxaliplatin-DNA
adducts. Crit Rev Oncol Hematol. 53:3–11. 2005. View Article : Google Scholar : PubMed/NCBI
|
22
|
Rebillard A, Lagadic-Gossmann D and
Dimanche-Boitrel MT: Cisplatin cytotoxicity: DNA and plasma
membrane targets. Curr Med Chem. 15:2656–2663. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Jiang M, Wang CY, Huang S, Yang T and Dong
Z: Cisplatin-induced apoptosis in p53-deficient renal cells via the
intrinsic mitochondrial pathway. Am J Physiol Renal Physiol.
296:F983–F993. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhu J, Yang Y and Wu J: Bcl-2 cleavages at
two adjacent sites by different caspases promote cisplatin-induced
apoptosis. Cell Res. 17:441–448. 2007.PubMed/NCBI
|
25
|
Sharma H, Sen S and Singh N: Molecular
pathways in the chemosensitization of cisplatin by quercetin in
human head and neck cancer. Cancer Biol Ther. 4:949–955. 2005.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Wei Q, Dong G, Franklin J and Dong Z: The
pathological role of Bax in cisplatin nephrotoxicity. Kidney Int.
72:53–62. 2007. View Article : Google Scholar : PubMed/NCBI
|
27
|
Peyrou M, Hanna PE and Cribb AE:
Cisplatin, gentamicin, and p-aminophenol induce markers of
endoplasmic reticulum stress in the rat kidneys. Toxicol Sci.
99:346–353. 2007. View Article : Google Scholar : PubMed/NCBI
|
28
|
Hotchkiss RS, Strasser A, McDunn JE and
Swanson PE: Cell death. N Engl J Med. 361:1570–1583. 2009.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Slee EA, Adrain C and Martin SJ:
Executioner caspase-3, -6, and -7 perform distinct, non-redundant
roles during the demolition phase of apoptosis. J Biol Chem.
276:7320–7326. 2001. View Article : Google Scholar : PubMed/NCBI
|
30
|
Olive PL and Banáth JP: Kinetics of
H2AX phosphorylation after exposure to cisplatin.
Cytometry B Clin Cytom. 76:79–90. 2009.
|
31
|
Fuertesa MA, Castillab J, Alonsoa C and
Perez JM: Cisplatin biochemical mechanism of action: from
cytotoxicity to induction of cell death through interconnections
between apoptotic and necrotic pathways. Curr Med Chem. 10:257–266.
2003. View Article : Google Scholar : PubMed/NCBI
|
32
|
Gonzalez VM, Fuertes MA, Alonso C and
Perez JM: Is cisplatin-induced cell death always produced by
apoptosis? Mol Pharmacol. 59:657–663. 2001.PubMed/NCBI
|
33
|
Perez RP: Cellular and molecular
determinants of cisplatin resistance. Eur J Cancer. 34:1535–1542.
1998. View Article : Google Scholar : PubMed/NCBI
|
34
|
Mandic A, Hansson J, Linder S and Shoshan
MC: Cisplatin induces endoplasmic reticulum stress and
nucleus-independent apoptotic signaling. J Biol Chem.
278:9100–9106. 2003. View Article : Google Scholar : PubMed/NCBI
|
35
|
Ruiz A, Matute C and Alberdi E:
Intracellular Ca2+ release through ryanodine receptors
contributes to AMPA receptor-mediated mitochondrial dysfunction and
ER stress in oligodendrocytes. Cell Death Dis. 1:e542010.
|
36
|
Lee JW, Kim WH, Yeo J and Jung MH: ER
stress is implicated in mitochondrial dysfunction-induced apoptosis
of pancreatic beta cells. Mol Cells. 30:545–549. 2010. View Article : Google Scholar : PubMed/NCBI
|
37
|
Takemoto K, Miyata S, Takamura H, Katayama
T and Tohyama M: Mitochondrial TRAP1 regulates the unfolded protein
response in the endoplasmic reticulum. Neurochem Int. 58:880–887.
2011. View Article : Google Scholar : PubMed/NCBI
|
38
|
Haghighat N, McCandless DW and Geraminegad
P: The effect of ammonium chloride on metabolism of primary neurons
and neuroblastoma cells in vitro. Metab Brain Dis. 15:151–162.
2000. View Article : Google Scholar : PubMed/NCBI
|