1
|
American Cancer Society. Cancer Facts and
Figures 2011, 2012. http://www.cancer.org/research/cancerfactsfigures/cancerfactsfigures/cancer-facts-figures-2011.
|
2
|
American Cancer Society. Lung Cancer
(Small Cell). 2012, http://www.cancer.org/cancer/lungcancer-non-smallcell.
|
3
|
Socinski MA, Smit EF, Lorigan P, Konduri
K, Reck M, Szczesna A, Blakely J, Serwatowski P, Karaseva NA,
Ciuleanu T, Jasssem J, Dediu M, Hong S, Visseren-Grul C, Hanauske
AR, Obasaju CK, Guba SC and Thatcher N: Phase II study of
pemetrexed plus carboplatin compared with etoposide plus
carboplatin in chemotherapy-naïve patients with extensive-stage
small-cell lung cancer. J Clin Oncol. 27:4787–4792. 2009.PubMed/NCBI
|
4
|
Foster NR, Qi Y, Krook JE, Kugler JW,
Kuross SA, Jett JR, Molina JR, Schild SE, Adjei AA and Mandrekar
SJ: Comparison of progression-free survival (PFS) and tumor
response as endpoints for predicting overall survival (OS) in
untreated extensive-stage small cell lung cancer (ED-SCLC):
findings based on North Central Cancer Treatment Group (NCCTG)
trials. J Clin Oncol. 27(Suppl 15): 80852009.
|
5
|
van Meerbeeck JP, Fennell DA and De
Ruysscher DKM: Small-cell lung cancer. Lancet. 378:1741–1755.
2011.
|
6
|
Tempero MA, Klimstra D, Berlin J,
Hollingsworth T, Kim P, Merchnat N, Moore M, Pleskow D, Wang-Gillam
A and Lowy AM: Changing the way we do business: recommendations to
acclerate biomarker development in pancreatic cancer. Clin Cancer
Res. 19:538–540. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Erkan M, Hausmann S, Michalski CW,
Fingerle A, Dobritz M, Kleeff J and Friess H: The role of stroma in
pancreatic cancer: diagnostic and therapeutic implications. Nat Rev
Gastroenterol Hepatol. 9:454–467. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Provenzano PP, Cuevas C, Chang AE, Goel
VK, Von Hoff DD and Hingorani SR: Enzymatic targeting of the stroma
ablates physical barriers to treatment of pancreatic ductal
adenocarcinoma. Cancer Cell. 21:418–429. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Hidalgo M: Pancreatic cancer. N Engl J
Med. 362:1605–1617. 2010. View Article : Google Scholar
|
10
|
Teicher BA: Searching for molecular
targets in sarcoma. Biochem Pharmacol. 84:1–10. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Siegel R, Naishadham D and Jemal A: Cancer
statistics, 2012. CA Cancer J Clin. 62:10–29. 2012. View Article : Google Scholar
|
12
|
Oze I, Hotta K, Kiura K, Ochi N, Takigawa
N, Fujiwara Y, Tabata M and Tanimoto M: Twenty-seven years of phase
III trials for patients with extensive disease small-cell lung
cancer: disappointing results. PLoS One. 4:e78352009.PubMed/NCBI
|
13
|
Johnson BE, Ihde DC, Makuch RW, Gazdar AF,
Carney DN, Loe H, Russell E, Nau MN and Minna JD: myc family
oncogene amplification in tumor cell lines established from small
cell lung cancer patients and its relationship to clinical status
and course. J Clin Invest. 79:1629–1634. 1987. View Article : Google Scholar : PubMed/NCBI
|
14
|
Johnson BE, Russell E, Simmons AM, Phelps
R, Steinberg SM, Ihde DC and Gazdar AF: MYC family DNA
amplification in 126 tumor cell lines from patients with small cell
lung cancer. J Cell Biochem (Suppl). 24:210–217. 1996. View Article : Google Scholar : PubMed/NCBI
|
15
|
Shivapurkar N, Reddy J, Matta H,
Sathyanarayana UG, Huang CX, Toyoka S, Minna JD, Chaudhary PM and
Gazdar AF: Loss expression of death-inducing signaling complex
(DISC) components in lung cancer cell lines and the influence of
MYC amplification. Oncogene. 21:8510–8514. 2002. View Article : Google Scholar : PubMed/NCBI
|
16
|
Park KS, Martelotto LG, Peifer M, Sos ML,
Karnezis AN, Mahjoub MR, Bernard K, Conklin JF, Szczepny A, Yuan J,
Guo R, Ospina B, Falzon J, Bennett S, Brown TJ, Markovic A,
Devereux WL, Ocasio CA, Chen JK, Stearns T, Thomas RK, Dorsch M,
Buonamici S, Watkins DN, Peacock CD and Sage J: A critical
requirement for Hedgehog signaling in small cell lung cancer. Nat
Med. 17:1504–1508. 2011. View
Article : Google Scholar : PubMed/NCBI
|
17
|
Watkins DN, Berman DM and Baylin SB:
Hedgehog signaling: progenitor phenotype in small cell lung cancer.
Cell Cycle. 2:196–198. 2003. View Article : Google Scholar : PubMed/NCBI
|
18
|
D’Angelo SP and Pietanza MC: The molecular
pathogenesis of small cell lung cancer. Cancer Biol Ther. 10:1–10.
2010.
|
19
|
Su G, Burant CF, Beecher CW, Athey BD and
Meng F: Integrated metabolome and transriptome analysis of the
NCI60 dataset. BMC Bioinformatics. 12(Suppl 1): S362011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Sokilde R, Kaczkowski B, Podolska A,
Cirera S, Gorodkin J, Moller S and Litman T: Global microRNA
analysis of the NCI-60 cancer cell panel. Mol Cancer Ther.
10:375–384. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Park ES, Rabinovsky R, Carey M, Hennessy
BT, Agarwal R, Liu W, Ju Z, Deng W, Lu Y, Woo HG, Kim SB, Lee JS,
Garraway LA, Weinstein JN, Mills GB, Lee JS and Davies MA:
Integrative analysis of proteomic signatures, mutations, and drug
responsiveness in the NCI 60 cancer cell lines set. Mol Cancer
Ther. 9:257–267. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Covell DG, Huang R and Wallqvist A:
Anticancer medicines in development: assessment of bioactivity
profiles within the National Cancer Institute anticancer screening
data. Mol Cancer Ther. 6:2261–2270. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Shoemaker RH: The NCI60 human tumor cell
line anticancer drug screen. Nat Rev Cancer. 6:813–823. 2006.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Fer ND, Shoemaker RH and Monks A:
Adaphostin toxicity in a sensitive non-small cell lung cancer model
is mediated through Nrf2 signaling and heme oxygenase 1. J Exp Clin
Cancer Res. 29:912010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Muus U, Hose C, Yao W, Kosakowska-Cholody
T, Farnsworth D, Dyba M, Lountos GT, Waugh DS, Monks A, Burke TR Jr
and Michejda CJ: Development of antiproliferative phenylmaleimides
that activate the unfolded protein response. Bioorg Med Chem.
18:4535–4541. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Jobson AG, Lountos GT, Lorenzi PL,
Connelly J, Cerna D, Tropea JE, Onda A, Zoppoli G, Kondapaka S,
Zhang G, Caplen NJ, Cardellina JH, Yoo SS, Monks A, Self C, Waugh
DS, Shoemaker RH and Pommier Y: Cellular inhibition of checkpoint
kinase 2 (Chk2) and potentiation of camptothecins and radiation by
the novel Chk2 inhibitor PV1019 [7-nitro-1H-indole-2-carboxylic
acid {4-[1-(guanidinohydrazone)-ethyl]-phenyl}-amide]. J Pharmacol
Exp Ther. 331:816–826. 2009.PubMed/NCBI
|
27
|
Monks A, Hose C, Pezzoli P, Kondapaka S,
Vasant G, Petersen KD, Sehested M, Monteforte J and Shoemaker RH:
Gene expression-signature of belinostat in cell lines is specific
for histone deacetylase inhibitor treatment, with a corresponding
signature in xenografts. Anticancer Drugs. 20:682–692. 2009.
View Article : Google Scholar
|
28
|
Kosakowska-Cholody T, Cholody WM,
Hariprakasha HK, Monks A, Kar S, Wang M, Michejda CJ and Carr BI:
Growth inhibition of hepatocellular carcinoma cells in vitro and in
vivo by the 8-methoxy analog of WMC79. Cancer Chemother Pharmacol.
63:769–778. 2009. View Article : Google Scholar : PubMed/NCBI
|
29
|
Martinez JM, Sali T, Okazaki R, Anna C,
Hollingshead M, Hose C, Monks A, Walker NJ, Baek SJ and Eling TE:
Drug-induced expression of nonsteroidal anti-inflammatory
drug-activated gene/macrophage inhibitory
cytokine-1/prostate-derived factor, a putative suppressor, inhibits
tumor growth. J Pharmacol Exp Ther. 18:899–906. 2006. View Article : Google Scholar
|
30
|
Kummar S, Raffeld M, Juwara L, Horneffer
Y, Strassberger A, Allen D, Steinberg SM, Rapisarda A, Spencer SD,
Figg WD, Chen X, Turkbey IB, Choyke P, Murgo AJ, Doroshow JH and
Melillo G: Multihistology, target-driven pilot trial of oral
topotecan as an inhibitor of hypoxia-inducible factor-1α in
advanced solid tumors. Clin Cancer Res. 17:5123–5131.
2011.PubMed/NCBI
|
31
|
Terzuoli E, Puppo M, Rapisarda A,
Uranchimeg B, Cao L, Burger AM, Ziche M and Melillo G:
Aminoflavone, a ligand of the aryl hydrocarbon receptor, inhibits
HIF-1α expression in an AhR-independent fashion. Cancer Res.
70:6837–6848. 2010.PubMed/NCBI
|
32
|
Rapisarda A, Hollingshead M, Uranchimeg B,
Bonomi CA, Borgel SD, Carter JP, Gehrs B, Raffeld M, Kinders RJ,
Parchment R, Anver MR, Shoemaker RH and Melillo G: Increased
antitumor activity of bevacizumab in combination with hypoxia
inducible factor-1 inhibition. Mol Cancer Ther. 8:1867–1877. 2009.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Rapisarda A and Melillo G: Overcoming
disappointing results with antiangiogenic therapy by targeting
hypoxia. Nat Rev Clin Oncol. 9:378–390. 2012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Rapisarda A and Melillo G: Role of the
VEGF/VEGFR axis in cancer biology and therapy. Adv Cancer Res.
114:237–267. 2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Rapisarda A and Melillo G: Combination
strategies targeting hypoxia inducible factor 1 (HIF-1) for cancer
therapy. The Tumor Microenvironment. Series: Cancer Drug Discovery
and Development. Bagley RG: Springer Science+Business Media, LLC;
2010, View Article : Google Scholar
|
36
|
Onnis B, Rapisarda A and Melillo G:
Development of HIF-1 inhibitors for cancer therapy. J Cell Mol Med.
13:2780–2786. 2009. View Article : Google Scholar : PubMed/NCBI
|
37
|
Rapisarda A, Shoemaker RH and Melillo G:
Antiangiogenic agents and HIF-1 inhibitors meet at the crossroads.
Cell Cycle. 8:4040–4043. 2009. View Article : Google Scholar : PubMed/NCBI
|
38
|
Rapisarda A and Melillo G: Role of the
hypoxic tumor microenvironment in the resistance to anti-angiogenic
therapies. Drug Resist Updat. 12:74–80. 2009. View Article : Google Scholar : PubMed/NCBI
|
39
|
Stockwin LH, Yu SX, Stotler H,
Hollingshead MG and Newton DL: ARC (NSC 188491) has identical
activity to Sangivamycin (NSC 65346) including inhibition of both
P-TEFb and PKC. BMC Cancer. 9:632009. View Article : Google Scholar : PubMed/NCBI
|
40
|
Stockwin LH, Han B, Yu SX, Hollingshead
MG, ElSohly MA, Gul G, Slade D, Galal A and Newton DL: Artemisinin
dimer anticancer activity correlates with heme-catalyzed reactive
oxygen species generation and endoplasmic reticulum stress
induction. Int J Cancer. 125:1266–1275. 2009. View Article : Google Scholar
|
41
|
Stockwin LH, Yu XY, Borgel S, Hancock C,
Wolfe TL, Phillips LR, Hollingshead MG and Newton DL: Sodium
dichloroacetate selectively targets cells with defects in the
mitochondrial ETC. Int J Cancer. 127:2510–2519. 2010. View Article : Google Scholar : PubMed/NCBI
|
42
|
Han B, Stockwin LH, Hancock C, Yu SX,
Hollingshead MG and Newton DL: Proteomic analysis of nuclei
isolated from cancer cell lines treated with indenoisoquinoline NSC
724998, a novel topoisomerase I inhibitor. J Proteome Res.
9:4016–4027. 2010. View Article : Google Scholar : PubMed/NCBI
|
43
|
Hancock CN, Stockwin LH, Han B, Divelbiss
RD, Jun JH, Malhotra SV, Hollingshead MG and Newton DL: A copper
chelate of thiosemicarbazone NSC 689534 induces oxidative/ER stress
and inhibits tumor growth in vitro and in vivo. Free Radic Biol
Med. 50:110–121. 2011. View Article : Google Scholar : PubMed/NCBI
|
44
|
Orsburn BC, Stockwin LH and Newton DL:
Challenges in plasma membrane phosphoproteomics. Expert Rev
Proteomics. 8:483–494. 2011. View Article : Google Scholar : PubMed/NCBI
|
45
|
Glaros TG, Stockwin LH, Mullendore ME,
Smith B, Morrison BL and Newton DL: The ‘survivin suppressants’ NSC
80467 and YM155 induce a DNA damage response. Cancer Chemother
Pharmacol. 70:207–212. 2012.
|
46
|
Ye X, Chan KC, Prieto DA, Luke BT, Johann
DJ, Stockwin LH, Newton DL and Blonder J: Trypsin-mediated
18O/16O labeling for biomarker discovery.
Methods Mol Biol. 1002:133–149. 2013.PubMed/NCBI
|
47
|
Saini V, Hose CD, Monks A, Nagashima K,
Han B, Newton DL, Millione A, Shah J, Hollingshead MG, Hite KM,
Burkett MW, Delosh RM, Silvers TE, Scudiero DA and Shoemaker RH:
Identification of CBX3 and ABCA5 as putative biomarkers for tumor
stem cells in osteosarcoma. PLoS One. 7:e414012012. View Article : Google Scholar : PubMed/NCBI
|
48
|
Galal AM, Gul W, Slade D, Ross SA, Feng S,
Hollingshead MG, Alley MC, Kaur G and ElSohly MA: Synthesis and
evaluation of dihydroartemisinin and dihydroartemisitene acetal
dimers showing anticancer and antiprotozoal activity. Bioorg Med
Chem. 17:741–751. 2009. View Article : Google Scholar : PubMed/NCBI
|
49
|
Kaur G, Hollingshead M, Holbeck S,
Schauer-Vukasinovic V, Camalier RF, Domling A and Agarwal S:
Biological evaluation of tubulysin A: a potential anticancer and
antiangiogenic nautral product. Biochem J. 396:235–342. 2006.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Yang SX, Kummar S, Steinberg SM, Murgo AJ,
Gutierrez M, Rubinstein L, Nguyen D, Kaur G, Chen AP, Giranda VL,
Tomaszewski JE and Doroshow JH: Immunohistochemical detection of
poly(ADP-ribose)polymerase inhibition by ABT-888 in patients with
refractory solid tumors and lymphomas. Cancer Biol Ther.
8:2004–2009. 2009. View Article : Google Scholar : PubMed/NCBI
|
51
|
Jobson AG, Cardellina JH, Scudiero D,
Kondapaka S, Zhang H, Kim H, Shoemaker R and Pommier Y:
Identification of a bis-guanylhydrazone
[4,4′-diacetyldiphenylurea-bis (guanylhydrazone); NSC 109555] as a
novel chemotype for inhibition of Ckh2 kinase. Mol Pharmacol.
72:876–884. 2007.
|