1
|
Xue JH, Yuan Z, Wu Y, et al: High glucose
promotes intracellular lipid accumulation in vascular smooth muscle
cells by impairing cholesterol influx and efflux balance.
Cardiovasc Res. 86:141–150. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Li AC and Glass CK: The macrophage foam
cell as a target for therapeutic intervention. Nat Med.
8:1235–1242. 2002. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kleemann R, Zadelaar S and Kooistra T:
Cytokines and atherosclerosis: a comprehensive review of studies in
mice. Cardiovasc Res. 79:360–376. 2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Lin CY, Lee TS, Chen CC, Chang CA, Lin YJ,
Hsu YP and Ho LT: Endothelin-1 exacerbates lipid accumulation by
increasing the protein degradation of the ATP-binding cassette
transporter G1 in macrophages. J Cell Physiol. 226:2198–2205. 2011.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Cheng LC, Su KH, Kou YR, Shyue SK, et al:
α-Lipoic acid ameliorates foam cell formation via liver X receptor
α-dependent upregulation of ATP-binding cassette transporters A1
and G1. Free Radic Biol Med. 50:47–54. 2011.
|
6
|
Park YM, Kashyap SR, Major J and
Silverstein RL: Insulin promotes macrophage foam cell formation:
potential implications in diabetes-related atherosclerosis. Lab
Invest. 92:1171–1180. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Morimoto Y, Kikuchi K, Ito T, et al: MK615
attenuates Porphyromonas gingivalis
lipopolysaccharide-induced pro-inflammatory cytokine release via
MAPK inactivation in murine macrophage-like RAW264.7 cells. Biochem
Biophys Res Commun. 389:90–94. 2009.
|
8
|
Triantafilou M, Gamper FG, Lepper PM, et
al: Lipopolysaccharides from atherosclerosis-associated bacteria
antagonize TLR4, induce formation of TLR2/1/CD36 complexes in lipid
rafts and trigger TLR2-induced inflammatory responses in human
vascular endothelial cells. Cell Microbiol. 9:2030–2039. 2007.
View Article : Google Scholar
|
9
|
Nakamura N, Yoshida M, Umeda M, et al:
Extended exposure of lipopolysaccharide fraction from
Porphyromonas gingivalis facilitates mononuclear cell
adhesion to vascular endothelium via Toll-like receptor-2 dependent
mechanism. Atherosclerosis. 196:59–67. 2008.PubMed/NCBI
|
10
|
Kiechl S, Egger G, Mayr M, et al: Chronic
infections and the risk of carotid atherosclerosis: prospective
results from a large population study. Circulation. 103:1064–1070.
2001. View Article : Google Scholar : PubMed/NCBI
|
11
|
Gitlin JM and Loftin CD: Cyclooxygenase-2
inhibition increases lipopolysaccharide-induced atherosclerosis in
mice. Cardiovasc Res. 81:400–407. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Lei L, Li H, Yan F, Li Y and Xiao Y:
Porphyromonas gingivalis lipopolysaccharide alters
atherosclerotic-related gene expression in oxidized
low-density-lipoprotein-induced macrophages and foam cells. J
Periodontal Res. 46:427–437. 2011. View Article : Google Scholar
|
13
|
Pussinen PJ and Mattila K: Periodontal
infections and atherosclerosis: mere associations? Curr Opin
Lipidol. 15:583–588. 2004. View Article : Google Scholar : PubMed/NCBI
|
14
|
Qi M, Miyakawa H and Kuramitsu HK:
Porphyromonas gingivalis induces murine macrophage foam cell
formation. Microb Pathog. 35:259–267. 2003. View Article : Google Scholar
|
15
|
Kuramitsu HK, Kang IC and Qi M:
Interactions of Porphyromonas gingivalis with host cells:
implications for cardiovascular diseases. J Periodontol. 74:85–89.
2003.
|
16
|
Kuramitsu HK, Qi M, Kang IC and Chen W:
Role for periodontal bacteria in cardiovascular diseases. Ann
Periodontol. 6:41–47. 2001. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kuramitsu HK, Miyakawa H, Qi M and Kang
IC: Cellular responses to oral pathogens. Ann Periodontol. 7:90–94.
2002. View Article : Google Scholar : PubMed/NCBI
|
18
|
Katayama I, Hotokezaka Y, Matsuyama T,
Sumi T and Nakamura T: Ionizing radiation induces macrophage foam
cell formation and aggregation through JNK-dependent activation of
CD36 scavenger receptors. Int J Radiat Oncol Biol Phys. 70:835–846.
2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Li XY, Kong LX, Li J, He HX and Zhou YD:
Kaempferol suppresses lipid accumulation in macrophages through the
downregulation of cluster of differentiation 36 and the
upregulation of scavenger receptor class B type I and ATP-binding
cassette transporters A1 and G1. Int J Mol Med. 31:331–338.
2013.
|
20
|
Tsai JY, Su KH, Shyue SK, et al: EGb761
ameliorates the formation of foam cells by regulating the
expression of SR-A and ABCA1: role of haem oxygenase-1. Cardiovasc
Res. 88:415–423. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Feng B and Tabas I: ABCA1-mediated
cholesterol efflux is defective in free cholesterol-loaded
macrophages. Mechanism involves enhanced ABCA1 degradation in a
process requiring full NPC1 activity. J Biol Chem. 277:43271–43280.
2002. View Article : Google Scholar
|
22
|
Wang Y and Oram JF: Unsaturated fatty
acids inhibit cholesterol efflux from macrophages by increasing
degradation of ATP-binding cassette transporter A1. J Biol Chem.
277:5692–5697. 2002. View Article : Google Scholar : PubMed/NCBI
|
23
|
Kim HS, Park SY, Kim EK, Ryu EY, Kim YH,
Park G and Lee SJ: Acanthopanax senticosus has a heme
oxygenase-1 signaling-dependent effect on Porphyromonas
gingivalis lipopolysaccharide-stimulated macrophages. J
Ethnopharmacol. 142:819–828. 2012. View Article : Google Scholar
|
24
|
de Winther MP and Hofker MH: Scavenging
new insights into atherogenesis. J Clin Invest. 105:1039–1041.
2000.PubMed/NCBI
|
25
|
Kunjathoor VV, Febbraio M, Podrez EA, et
al: Scavenger receptors class A-I/II and CD36 are the principal
receptors responsible for the uptake of modified low density
lipoprotein leading to lipid loading in macrophages. J Biol Chem.
277:49982–49988. 2002. View Article : Google Scholar
|
26
|
Ortiz-Masià D, Díez I, Calatayud S, et al:
Induction of CD36 and thrombospondin-1 in macrophages by
hypoxia-inducible factor 1 and its relevance in the inflammatory
process. PLoS One. 7:e485352012.PubMed/NCBI
|
27
|
Brooks-Wilson A, Marcil M, Clee SM, et al:
Mutations in ABC1 in Tangier disease and familial high-density
lipoprotein deficiency. Nat Genet. 22:336–345. 1999. View Article : Google Scholar : PubMed/NCBI
|
28
|
Maekawa T, Takahashi N, Tabeta K, et al:
Chronic oral infection with Porphyromonas gingivalis
accelerates atheroma formation by shifting the lipid profile. PLoS
One. 6:e202402011.
|
29
|
Oram JF and Heinecke JW: ATP-binding
cassette transporter A1: a cell cholesterol exporter that protects
against cardiovascular disease. Physiol Rev. 85:1343–1372. 2005.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Yin K, Liao DF and Tang CK: ATP-binding
membrane cassette transporter A1 (ABCA1): a possible link between
inflammation and reverse cholesterol transport. Mol Med.
16:438–449. 2010.PubMed/NCBI
|
31
|
Martinez LO, Agerholm-Larsen B, Wang N,
Chen W and Tall AR: Phosphorylation of a pest sequence in ABCA1
promotes calpain degradation and is reversed by ApoA-I. J Biol
Chem. 278:37368–37374. 2003. View Article : Google Scholar : PubMed/NCBI
|
32
|
Arakawa R and Yokoyama S: Helical
apolipoproteins stabilize ATP-binding cassette transporter A1 by
protecting it from thiol protease-mediated degradation. J Biol
Chem. 277:22426–22429. 2002. View Article : Google Scholar
|
33
|
Liu XY, Lu Q, Ouyang XP, et al: Apelin-13
increases expression of ATP-binding cassette transporter A1 via
activating protein kinase C α signaling in THP-1 macrophage-derived
foam cells. Atherosclerosis. 226:398–407. 2013.PubMed/NCBI
|
34
|
Orozco LD, Kapturczak MH, Barajas B, et
al: Heme oxygenase-1 expression in macrophages plays a beneficial
role in atherosclerosis. Circ Res. 100:1703–1711. 2007. View Article : Google Scholar : PubMed/NCBI
|
35
|
Idriss NK, Blann AD and Lip GY:
Hemoxygenase-1 in cardiovascular disease. J Am Coll Cardiol.
52:971–978. 2008. View Article : Google Scholar
|
36
|
Ishikawa K, Sugawara D, Wang Xp, Suzuki K,
Itabe H, Maruyama Y and Lusis AJ: Heme oxygenase-1 inhibits
atherosclerotic lesion formation in ldl-receptor knockout mice.
Circ Res. 88:506–512. 2001. View Article : Google Scholar : PubMed/NCBI
|