1
|
Warburg O: On the origin of cancer cells.
Science. 123:309–314. 1956. View Article : Google Scholar : PubMed/NCBI
|
2
|
Pan JG and Mak TW: Metabolic targeting as
an anticancer strategy: dawn of a new era? Sci STKE.
381:pe142007.PubMed/NCBI
|
3
|
Bonnet S, Archer SL, Allalunis-Turner J,
Haromy A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta
L, Bonnet S, et al: A mitochondria-K+ channel axis is
suppressed in cancer and its normalization promotes apoptosis and
inhibits cancer growth. Cancer Cell. 11:37–51. 2007.PubMed/NCBI
|
4
|
Michelakis ED, Webster L and Mackey JR:
Dichloroacetate (DCA) as a potential metabolic-targeting therapy
for cancer. Br J Cancer. 99:989–994. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Sutendra G, Dromparis P, Kinnaird A,
Stenson TH, Haromy A, Parker JM, et al: Mitochondrial activation by
inhibition of PDKII suppresses HIF1a signaling and angiogenesis in
cancer. Oncogene. 32:1638–1650. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Papandreou I, Goliasova T and Denko NC:
Anticancer drugs that target metabolism: Is dichloroacetate the new
paradigm? Int J Cancer. 128:1001–1008. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Fontanesi F, Soto IC, Horn D and
Barrientos A: Assembly of mitochondrial cytochrome c-oxidase, a
complicated and highly regulated cellular process. Am J Physiol
Cell Physiol. 291:1129–1147. 2006. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ogura S, Maruyama K, Hagiya Y, Sugiyama Y,
Tsuchiya K, Takahashi K, Abe F, Tabata K, Okura I, Nakajima M and
Tanaka T: The effect of 5-aminolevulinic acid on cytochrome c
oxidase activity in mouse liver. BMC Res Notes. 4:662011.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Ishizuka M, Abe F, Sano Y, Takahashi K,
Inoue K, Nakajima M, Kohda T, Komatsu N, Ogura S and Tanaka T:
Novel development of 5-aminolevurinic acid (ALA) in cancer
diagnoses and therapy. Int Immunopharmacol. 11:358–365. 2011.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Stummer W, Pichlmeier U, Meinel T,
Wiestler OD, Zanella F and Reulen HJ; ALA-Glioma Study Group.
Fluorescence-guided surgery with 5-aminolevulinic acid for
resection of malignant glioma: a randomised controlled multicentre
phase III trial. Lancet Oncol. 7:392–401. 2006. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ogura S, Kaneko K, Miyajima S, Ohshima K,
Yamaguchi K and Mochizuki T: Proneurotensin/neuromedin N secreted
from small cell lung carcinoma cell lines as a potential tumor
marker. Proteomics Clin Appl. 2:1620–1627. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Naciri M, Kuystermans D and Al-Rubeai M:
Monitoring pH and dissolved oxygen in mammalian cell culture using
optical sensors. Cytotechnology. 57:245–250. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Adachi R, Takeuchi K and Suzuki K:
Antisense oligonucleotide to cofilin enhances respiratory burst and
phagocytosis in opsonized zymosan-stimulated mouse macrophage
J774.1 cells. J Biol Chem. 277:45566–45571. 2002. View Article : Google Scholar
|
14
|
Li CY, Lee JS, Ko YG, Kim JI and Seo JS:
Heat shock protein 70 inhibits apoptosis downstream of cytochrome c
release and upstream of caspase-3 activation. J Biol Chem.
275:25665–25671. 2000. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wang X: The expanding role of mitochondria
in apoptosis. Genes Dev. 15:2922–2933. 2001.PubMed/NCBI
|
16
|
Hirayama A, Kami K, Sugimoto M, Sugawara
M, Toki N, Onozuka H, Kinoshita T, Saito N, Ochiai A, Tomita M,
Esumi H and Soga T: Quantitative metabolome profiling of colon and
stomach cancer microenvironment by capillary electrophoresis
time-of-flight mass spectrometry. Cancer Res. 69:4918–4925. 2009.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Hagiya Y, Endo Y, Yonemura Y, Takahashi K,
Ishizuka M, Abe F, Tanaka T, Okura I, Nakajima M, Ishikawa T and
Ogura S: Pivotal roles of peptide transporter PEPT1 and ATP-binding
cassette (ABC) transporter ABCG2 in 5-aminolevulinic acid
(ALA)-based photocytotoxicity of gastric cancer cells in vitro.
Photodiagnosis Photodyn Ther. 9:204–214. 2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Hagiya Y, Fukuhara H, Matsumoto K, Endo Y,
Nakajima M, Tanaka T, Okura I, Kurabayashi A, Furihata M, Inoue K,
Shuin T and Ogura S: Expression levels of PEPT1 and ABCG2 play key
roles in 5-aminolevulinic acid (ALA)-induced tumor-specific
protoporphyrin IX (PpIX) accumulation in bladder cancer.
Photodiagnosis Photodyn Ther. 10:288–295. 2013. View Article : Google Scholar : PubMed/NCBI
|