1
|
Sidman RL, Dickie MM and Appel SH: Mutant
mice (Quaking and Jimpy) with deficient myelination in the central
nervous system. Science. 144:309–311. 1964. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ebersole T, Rho O and Artzt K: The
proximal end of mouse chromosome 17: new molecular markers identify
a deletion associated with quakingviable. Genetics. 131:183–190.
1992.PubMed/NCBI
|
3
|
Kondo T, Furuta T, Mitsunaga K, et al:
Genomic organization and expression analysis of the mouse qkI
locus. Mamm Genome. 10:662–669. 1999.PubMed/NCBI
|
4
|
Pilotte J, Larocque D and Richard S:
Nuclear translocation controlled by alternatively spliced isoforms
inactivates the QUAKING apoptotic inducer. Genes Dev. 15:845–858.
2001. View Article : Google Scholar : PubMed/NCBI
|
5
|
McInnes LA and Lauriat TL: RNA metabolism
and dysmyelination in schizophrenia. Neurosci Biobehav Rev.
30:551–561. 2006. View Article : Google Scholar : PubMed/NCBI
|
6
|
Larocque D, Pilotte J, Chen T, et al:
Nuclear retention of MBP mRNAs in the quaking viable mice. Neuron.
36:815–829. 2002. View Article : Google Scholar : PubMed/NCBI
|
7
|
Zhang Y and Feng Y: Distinct molecular
mechanisms lead to diminished myelin basic protein and 2′,3′-cyclic
nucleotide 3′-phosphodiesterase in qk(v) dysmyelination. J
Neurochem. 77:165–172. 2001.PubMed/NCBI
|
8
|
Zhao L, Mandler MD, Yi H and Feng Y:
Quaking I controls a unique cytoplasmic pathway that regulates
alternative splicing of myelin-associated glycoprotein. Proc Natl
Acad Sci USA. 107:19061–19066. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
van der Veer EP, de Bruin RG, Kraaijeveld
AO, et al: The RNA-binding protein quaking is a critical regulator
of vascular smooth muscle cell phenotype. Circ Res. 113:1065–1075.
2013.PubMed/NCBI
|
10
|
Li Z, Zhang Y, Li D and Feng Y:
Destabilization and mislocalization of myelin basic protein mRNAs
in quaking dysmyelination lacking the QKI RNA-binding proteins. J
Neurosci. 20:4944–4953. 2000.PubMed/NCBI
|
11
|
Rosenbluth J and Bobrowski-Khoury N:
Structural bases for central nervous system malfunction in the
quaking mouse: dysmyelination in a potential model of
schizophrenia. J Neurosci Res. 91:374–381. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Chubb C: Oligotriche and quaking gene
mutations. Phenotypic effects on mouse spermatogenesis and
testicular steroidogenesis. J Androl. 13:312–317. 1992.PubMed/NCBI
|
13
|
Hall MP, Nagel RJ, Fagg WS, et al: Quaking
and PTB control overlapping splicing regulatory networks during
muscle cell differentiation. RNA. 19:627–638. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Guo W, Shi X, Liu A, et al: RNA binding
protein QKI inhibits the ischemia/reperfusion-induced apoptosis in
neonatal cardiomyocytes. Cell Physiol Biochem. 28:593–602. 2011.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Fu H, Yang G, Wei M, et al: The
RNA-binding protein QKI5 is a direct target of C/EBPalpha and
delays macrophage differentiation. Mol Biol Cell. 23:1628–1635.
2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Galarneau A and Richard S: Target RNA
motif and target mRNAs of the Quaking STAR protein. Nat Struct Mol
Biol. 12:691–698. 2005. View
Article : Google Scholar : PubMed/NCBI
|
17
|
Diep CH, Charles NJ, Gilks CB, Kalloger
SE, Argenta PA and Lange CA: Progesterone receptors induce
FOXO1-dependent senescence in ovarian cancer cells. Cell Cycle.
12:1433–1449. 2013. View
Article : Google Scholar : PubMed/NCBI
|
18
|
Coffer PJ and Burgering BM: Forkhead-box
transcription factors and their role in the immune system. Nat Rev
Immunol. 4:889–899. 2004. View
Article : Google Scholar : PubMed/NCBI
|
19
|
Paik JH, Kollipara R, Chu G, et al: FoxOs
are lineage-restricted redundant tumor suppressors and regulate
endothelial cell homeostasis. Cell. 128:309–323. 2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Pohl BS, Schön C, Rössner A and Knöchel W:
The FoxO-subclass in Xenopus laevis development. Gene Expr
Patterns. 5:187–192. 2004. View Article : Google Scholar : PubMed/NCBI
|
21
|
Lee SY, Lee GR, Woo DH, et al: Depletion
of Aurora A leads to upregulation of FoxO1 to induce cell cycle
arrest in hepatocellular carcinoma cells. Cell Cycle. 12:67–75.
2013. View
Article : Google Scholar : PubMed/NCBI
|
22
|
Zhang X, Yalcin S, Lee DF, et al: FOXO1 is
an essential regulator of pluripotency in human embryonic stem
cells. Nat Cell Biol. 13:1092–1099. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhang X, Tang N, Hadden TJ and Rishi AK:
Akt, FoxO and regulation of apoptosis. Biochim Biophys Acta.
1813:1978–1986. 2011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Guttilla IK and White BA: Coordinate
regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast
cancer cells. J Biol Chem. 284:23204–23216. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Li J, Yang L, Song L, et al: Astrocyte
elevated gene-1 is a proliferation promoter in breast cancer via
suppressing transcriptional factor FOXO1. Oncogene. 28:3188–3196.
2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Silva J, Cavazos DA, Donzis E, Friedrichs
WE, Marciniak R and deGraffenried LA: Akt-induced tamoxifen
resistance is associated with altered FKHR regulation. Cancer
Invest. 25:569–573. 2007. View Article : Google Scholar : PubMed/NCBI
|
27
|
Arden KC: Multiple roles of FOXO
transcription factors in mammalian cells point to multiple roles in
cancer. Exp Gerontol. 41:709–717. 2006. View Article : Google Scholar : PubMed/NCBI
|
28
|
Wu Z, Sun H, Zeng W, He J and Mao X:
Upregulation of MircoRNA-370 induces proliferation in human
prostate cancer cells by downregulating the transcription factor
FOXO1. PLoS One. 7:e458252012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Guo Y, Liu H, Zhang H, Shang C and Song Y:
miR-96 regulates FOXO1-mediated cell apoptosis in bladder cancer.
Oncol Lett. 4:561–565. 2012.PubMed/NCBI
|
30
|
Lotan R: Retinoids in cancer
chemoprevention. FASEB J. 10:1031–1039. 1996.PubMed/NCBI
|
31
|
Yang QJ, Zhou LY, Mu YQ, et al:
All-trans retinoic acid inhibits tumor growth of human
osteosarcoma by activating Smad signaling-induced osteogenic
differentiation. Int J Oncol. 41:153–160. 2012.
|
32
|
Chen S, Fang Y, Ma L, Liu S and Li X:
Realgar-induced apoptosis and differentiation in all-trans
retinoic acid (ATRA)-sensitive NB4 and ATRA-resistant MR2 cells.
Int J Oncol. 40:1089–1096. 2012.PubMed/NCBI
|
33
|
Lainey E, Wolfromm A, Sukkurwala AQ, et
al: EGFR inhibitors exacerbate differentiation and cell cycle
arrest induced by retinoic acid and vitamin D 3 in acute myeloid
leukemia cells. Cell Cycle. 12:2978–2991. 2013. View Article : Google Scholar
|
34
|
Bengtsson AM, Jonsson G, Magnusson C,
Salim T, Axelsson C and Sjolander A: The cysteinyl leukotriene 2
receptor contributes to all-trans retinoic acid-induced
differentiation of colon cancer cells. BMC Cancer. 13:3362013.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Schuur ER, Loktev AV, Sharma M, Sun Z,
Roth RA and Weigel RJ: Ligand-dependent interaction of estrogen
receptor-alpha with members of the forkhead transcription factor
family. J Biol Chem. 276:33554–33560. 2001. View Article : Google Scholar : PubMed/NCBI
|
36
|
Han CY, Cho KB, Choi HS, Han HK and Kang
KW: Role of FoxO1 activation in MDR1 expression in
adriamycin-resistant breast cancer cells. Carcinogenesis.
29:1837–1844. 2008. View Article : Google Scholar : PubMed/NCBI
|
37
|
Tzivion G and Hay N: PI3K-AKT-FoxO axis in
cancer and aging. Biochim Biophys Acta. 1813:19252011. View Article : Google Scholar : PubMed/NCBI
|
38
|
Saccomanno L, Loushin C, Jan E, Punkay E,
Artzt K and Goodwin EB: The STAR protein QKI-6 is a translational
repressor. Proc Natl Acad Sci USA. 96:12605–12610. 1999. View Article : Google Scholar : PubMed/NCBI
|
39
|
Schumacher B, Hanazawa M, Lee MH, et al:
Translational repression of C. elegans p53 by GLD-1
regulates DNA damage-induced apoptosis. Cell. 120:357–368.
2005.PubMed/NCBI
|
40
|
Kim DH, Kim JM, Lee EK, et al: Modulation
of FoxO1 phosphorylation/acetylation by baicalin during aging. J
Nutr Biochem. 23:1277–1284. 2012. View Article : Google Scholar : PubMed/NCBI
|
41
|
Birkenkamp KU and Coffer PJ: Regulation of
cell survival and proliferation by the FOXO (Forkhead box, class O)
subfamily of Forkhead transcription factors. Biochem Soc Trans.
31:292–297. 2003. View Article : Google Scholar : PubMed/NCBI
|
42
|
Finlay D, Patel S, Dickson LM, et al:
Glycogen synthase kinase-3 regulates IGFBP-1 gene transcription
through the thymine-rich insulin response element. BMC Mol Biol.
5:152004. View Article : Google Scholar : PubMed/NCBI
|
43
|
Wang W, Yan C, Zhang J, et al: SIRT1
inhibits TNF-alpha-induced apoptosis of vascular adventitial
fibroblasts partly through the deacetylation of FoxO1. Apoptosis.
18:689–701. 2013. View Article : Google Scholar : PubMed/NCBI
|
44
|
Liu P, Kao TP and Huang H: CDK1 promotes
cell proliferation and survival via phosphorylation and inhibition
of FOXO1 transcription factor. Oncogene. 27:4733–4744. 2008.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Yang G, Fu H, Zhang J, et al: RNA-binding
protein quaking, a critical regulator of colon epithelial
differentiation and a suppressor of colon cancer. Gastroenterology.
138:231–240.e1–5. 2010. View Article : Google Scholar : PubMed/NCBI
|
46
|
Bian Y, Wang L, Lu H, et al:
Downregulation of tumor suppressor QKI in gastric cancer and its
implication in cancer prognosis. Biochem Biophys Res Commun.
422:187–193. 2012. View Article : Google Scholar : PubMed/NCBI
|