1
|
Jemal A, Bray F, Center MM, Ferlay J, Ward
E and Forman D: Global cancer statistics. CA Cancer J Clin.
61:69–90. 2011. View Article : Google Scholar
|
2
|
Law S, Kwong DL, Kwok KF, et al:
Improvement in treatment results and long-term survival of patients
with esophageal cancer: impact of chemoradiation and change in
treatment strategy. Ann Surg. 238:339–348. 2003.PubMed/NCBI
|
3
|
Law S and Wong J: The current management
of esophageal cancer. Adv Surg. 41:93–119. 2007. View Article : Google Scholar
|
4
|
Chen X, Yang G, Ding WY, Bondoc F, Curtis
SK and Yang CS: An esophagogastroduodenal anastomosis model for
esophageal adenocarcinogenesis in rats and enhancement by iron
overload. Carcinogenesis. 20:1801–1808. 1999. View Article : Google Scholar : PubMed/NCBI
|
5
|
Cross AJ, Freedman ND, Ren J, et al: Meat
consumption and risk of esophageal and gastric cancer in a large
prospective study. Am J Gastroenterol. 106:432–442. 2011.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Boult J, Roberts K, Brookes MJ, et al:
Overexpression of cellular iron import proteins is associated with
malignant progression of esophageal adenocarcinoma. Clin Cancer
Res. 14:379–387. 2008. View Article : Google Scholar : PubMed/NCBI
|
7
|
Desoize B: Metals and metal compounds in
cancer treatment. Anticancer Res. 24:1529–1544. 2004.PubMed/NCBI
|
8
|
Sanchez M, Galy B, Dandekar T, et al: Iron
regulation and the cell cycle: identification of an iron-responsive
element in the 3′-untranslated region of human cell division cycle
14A mRNA by a refined microarray-based screening strategy. J Biol
Chem. 281:22865–22874. 2006.
|
9
|
Brookes MJ, Boult J, Roberts K, et al: A
role for iron in Wnt signalling. Oncogene. 27:966–975. 2008.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Song S, Christova T, Perusini S, et al:
Wnt inhibitor screen reveals iron dependence of β-catenin signaling
in cancers. Cancer Res. 71:7628–7639. 2011.PubMed/NCBI
|
11
|
Munoz P, Zavala G, Castillo K, Aguirre P,
Hidalgo C and Nunez MT: Effect of iron on the activation of the
MAPK/ERK pathway in PC12 neuroblastoma cells. Biol Res. 39:189–190.
2006. View Article : Google Scholar : PubMed/NCBI
|
12
|
Yu Y and Richardson DR: Cellular iron
depletion stimulates the JNK and p38 MAPK signaling transduction
pathways, dissociation of ASK1-thioredoxin, and activation of ASK1.
J Biol Chem. 286:15413–15427. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kaomongkolgit R, Cheepsunthorn P, Pavasant
P and Sanchavanakit N: Iron increases MMP-9 expression through
activation of AP-1 via ERK/Akt pathway in human head and neck
squamous carcinoma cells. Oral Oncol. 44:587–594. 2008. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kukulj S, Jaganjac M, Boranic M, Krizanac
S, Santic Z and Poljak-Blazi M: Altered iron metabolism,
inflammation, transferrin receptors, and ferritin expression in
non-small-cell lung cancer. Med Oncol. 27:268–277. 2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Habashy HO, Powe DG, Staka CM, et al:
Transferrin receptor (CD71) is a marker of poor prognosis in breast
cancer and can predict response to tamoxifen. Breast Cancer Res
Treat. 119:283–293. 2010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Jiang XP, Elliott RL and Head JF:
Manipulation of iron transporter genes results in the suppression
of human and mouse mammary adenocarcinomas. Anticancer Res.
30:759–765. 2010.PubMed/NCBI
|
17
|
Magro G, Cataldo I, Amico P, et al:
Aberrant expression of TfR1/CD71 in thyroid carcinomas identifies a
novel potential diagnostic marker and therapeutic target. Thyroid.
21:267–277. 2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Testa U, Pelosi E and Peschle C: The
transferrin receptor. Crit Rev Oncog. 4:241–276. 1993.
|
19
|
Aisen P: Transferrin receptor 1. Int J
Biochem Cell Biol. 36:2137–2143. 2004. View Article : Google Scholar
|
20
|
Sargent PJ, Farnaud S and Evans RW:
Structure/function overview of proteins involved in iron storage
and transport. Curr Med Chem. 12:2683–2693. 2005. View Article : Google Scholar : PubMed/NCBI
|
21
|
Prutki M, Poljak-Blazi M, Jakopovic M,
Tomas D, Stipancic I and Zarkovic N: Altered iron metabolism,
transferrin receptor 1 and ferritin in patients with colon cancer.
Cancer Lett. 238:188–196. 2006. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wada S, Noguchi T, Takeno S and Kawahara
K: PIK3CA and TFRC located in 3q are new prognostic factors in
esophageal squamous cell carcinoma. Ann Surg Oncol. 13:961–966.
2006. View Article : Google Scholar : PubMed/NCBI
|
23
|
Hu Y, Lam KY, Wan TS, et al: Establishment
and characterization of HKESC-1, a new cancer cell line from human
esophageal squamous cell carcinoma. Cancer Genet Cytogenet.
118:112–120. 2000. View Article : Google Scholar : PubMed/NCBI
|
24
|
Hu YC, Lam KY, Law SY, et al:
Establishment, characterization, karyotyping, and comparative
genomic hybridization analysis of HKESC-2 and HKESC-3: two newly
established human esophageal squamous cell carcinoma cell lines.
Cancer Genet Cytogenet. 135:120–127. 2002. View Article : Google Scholar
|
25
|
Tang JC, Wan TS, Wong N, et al:
Establishment and characterization of a new xenograft-derived human
esophageal squamous cell carcinoma cell line SLMT-1 of Chinese
origin. Cancer Genet Cytogenet. 124:36–41. 2001. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhang H, Jin Y, Chen X, et al: Cytogenetic
aberrations in immortalization of esophageal epithelial cells.
Cancer Genet Cytogenet. 165:25–35. 2006. View Article : Google Scholar : PubMed/NCBI
|
27
|
Hui MK, Chan KW, Luk JM, et al:
Cytoplasmic Forkhead Box M1 (FoxM1) in esophageal squamous cell
carcinoma significantly correlates with pathological disease stage.
World J Surg. 36:90–97. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Hui MK, Lai KK, Chan KW, et al: Prognostic
significance of phosphorylated RON in esophageal squamous cell
carcinoma. Med Oncol. 29:1699–1706. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Lee NP, Leung KW, Wo JY, Tam PC, Yeung WS
and Luk JM: Blockage of testicular connexins induced apoptosis in
rat seminiferous epithelium. Apoptosis. 11:1215–1229. 2006.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Lee NP, Tsang FH, Shek FH, et al:
Prognostic significance and therapeutic potential of eukaryotic
translation initiation factor 5A (eIF5A) in hepatocellular
carcinoma. Int J Cancer. 127:968–976. 2010.PubMed/NCBI
|
31
|
Chan KT and Lung ML: Mutant p53 expression
enhances drug resistance in a hepatocellular carcinoma cell line.
Cancer Chemother Pharmacol. 53:519–526. 2004. View Article : Google Scholar : PubMed/NCBI
|
32
|
Liu LX, Lee NP, Chan VW, et al: Targeting
cadherin-17 inactivates Wnt signaling and inhibits tumor growth in
liver carcinoma. Hepatology. 50:1453–1463. 2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Hanninen MM, Haapasalo J, Haapasalo H, et
al: Expression of iron-related genes in human brain and brain
tumors. BMC Neurosci. 10:362009. View Article : Google Scholar : PubMed/NCBI
|
34
|
Ryschich E, Huszty G, Knaebel HP, Hartel
M, Buchler MW and Schmidt J: Transferrin receptor is a marker of
malignant phenotype in human pancreatic cancer and in
neuroendocrine carcinoma of the pancreas. Eur J Cancer.
40:1418–1422. 2004. View Article : Google Scholar : PubMed/NCBI
|
35
|
Sciot R, Paterson AC, van Eyken P, Callea
F, Kew MC and Desmet VJ: Transferrin receptor expression in human
hepatocellular carcinoma: an immunohistochemical study of 34 cases.
Histopathology. 12:53–63. 1988. View Article : Google Scholar : PubMed/NCBI
|
36
|
Cmejla R, Petrak J and Cmejlova J: A novel
iron responsive element in the 3′ UTR of human MRCKα. Biochem
Biophys Res Commun. 341:158–166. 2006.
|
37
|
Cmejla R, Ptackova P, Petrak J, et al:
Human MRCKα is regulated by cellular iron levels and interferes
with transferrin iron uptake. Biochem Biophys Res Commun.
395:163–167. 2010.
|
38
|
Schaar DG, Medina DJ, Moore DF, Strair RK
and Ting Y: miR-320 targets transferrin receptor 1 (CD71) and
inhibits cell proliferation. Exp Hematol. 37:245–255. 2009.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Ford SJ, Obeidy P, Lovejoy DB, et al:
Deferasirox (ICL670A) effectively inhibits oesophageal cancer
growth in vitro and in vivo. Br J Pharmacol.
168:1316–1328. 2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Loisel S, Andre PA, Golay J, et al:
Antitumour effects of single or combined monoclonal antibodies
directed against membrane antigens expressed by human B cells
leukaemia. Mol Cancer. 10:422011. View Article : Google Scholar
|
41
|
Du H, Yao W, Fang M and Wu D: ARF triggers
cell G1 arrest by a P53 independent ERK pathway. Mol Cell Biochem.
357:415–422. 2011. View Article : Google Scholar : PubMed/NCBI
|
42
|
McCubrey JA, Steelman LS, Chappell WH, et
al: Roles of the Raf/MEK/ERK pathway in cell growth, malignant
transformation and drug resistance. Biochim Biophys Acta.
1773:1263–1284. 2007. View Article : Google Scholar : PubMed/NCBI
|
43
|
Sahu RP, Zhang R, Batra S, Shi Y and
Srivastava SK: Benzyl isothiocyanate-mediated generation of
reactive oxygen species causes cell cycle arrest and induces
apoptosis via activation of MAPK in human pancreatic cancer cells.
Carcinogenesis. 30:1744–1753. 2009. View Article : Google Scholar
|